{"title":"High-level quantum chemistry exploration of reduction by group-13 hydrides: insights into the rational design of bio-mimic CO2 reduction","authors":"B. Chan, Masanari Kimura","doi":"10.1088/2516-1075/ac9bb3","DOIUrl":null,"url":null,"abstract":"In the present study, we have used computational quantum chemistry to explore the reduction of various types of substrates by group-13 hydrides. We use the high-level L-W1X method to obtain the energies for the constituent association and hydride transfer reactions. We find that the hydride transfer reactions are highly exothermic, while the preceding association reactions are less so. Thus, improving the thermodynamics of substrate association may improve the overall process. Among the various substrates, amine and imine show the strongest binding, while CO2 shows the weakest. Between the group-13 hydrides, alanes bind most strongly with the substrates, and they also have the most exothermic hydride transfer reactions. To facilitate CO2 binding, we have examined alanes with electron-withdrawing groups, and we indeed find CF3 groups to be effective. Drawing inspiration from the RuBisCO enzyme for CO2 fixation, we have further examined the activation of CO2 with two independent AlH(CF3)2 molecules, with the results showing an even more exothermic association. This observation may form the basis for designing an effective dialane reagent for CO2 reduction. We have also assessed a range of lower-cost computational methods for the calculation of systems in the present study. We find the DSD-PBEP86 double-hybrid DFT method to be the most suitable for the study of related medium-sized systems.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ac9bb3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we have used computational quantum chemistry to explore the reduction of various types of substrates by group-13 hydrides. We use the high-level L-W1X method to obtain the energies for the constituent association and hydride transfer reactions. We find that the hydride transfer reactions are highly exothermic, while the preceding association reactions are less so. Thus, improving the thermodynamics of substrate association may improve the overall process. Among the various substrates, amine and imine show the strongest binding, while CO2 shows the weakest. Between the group-13 hydrides, alanes bind most strongly with the substrates, and they also have the most exothermic hydride transfer reactions. To facilitate CO2 binding, we have examined alanes with electron-withdrawing groups, and we indeed find CF3 groups to be effective. Drawing inspiration from the RuBisCO enzyme for CO2 fixation, we have further examined the activation of CO2 with two independent AlH(CF3)2 molecules, with the results showing an even more exothermic association. This observation may form the basis for designing an effective dialane reagent for CO2 reduction. We have also assessed a range of lower-cost computational methods for the calculation of systems in the present study. We find the DSD-PBEP86 double-hybrid DFT method to be the most suitable for the study of related medium-sized systems.