Ulrich Rost, Florian Josef Wirkert, Jeffrey Roth, Michael Brodmann, Svenja Stiber, Aldo Saul Gago, Kaspar Andreas Friedrich
{"title":"A novel advanced test system for polymer electrolyte membrane water electrolysis based on hydraulic cell compression","authors":"Ulrich Rost, Florian Josef Wirkert, Jeffrey Roth, Michael Brodmann, Svenja Stiber, Aldo Saul Gago, Kaspar Andreas Friedrich","doi":"10.1002/fuce.202200068","DOIUrl":null,"url":null,"abstract":"In this work, a novel polymer electrolyte membrane water electrolyzer (PEMWE) test cell based on hydraulic single‐cell compression is described. In this test cell, the current density distribution is almost homogeneous over the active cell area due to hydraulic cell clamping. As the hydraulic medium entirely surrounds the active cell components, it is also used to control cell temperature resulting in even temperature distribution. The PEMWE single‐cell test system based on hydraulic compression offers a 25 cm2 active surface area (5.0 × 5.0 cm) and can be operated up to 80°C and 6.0 A/cm2. Construction details and material selection for the designed test cell are given in this document. Furthermore, findings related to pressure distribution analyzed by utilizing a pressure‐sensitive foil, the cell performance indicated by polarization curves, and the reproducibility of results are described. Experimental data indicate the applicability of the presented testing device for relevant PEMWE component testing and material analysis.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202200068","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.202200068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, a novel polymer electrolyte membrane water electrolyzer (PEMWE) test cell based on hydraulic single‐cell compression is described. In this test cell, the current density distribution is almost homogeneous over the active cell area due to hydraulic cell clamping. As the hydraulic medium entirely surrounds the active cell components, it is also used to control cell temperature resulting in even temperature distribution. The PEMWE single‐cell test system based on hydraulic compression offers a 25 cm2 active surface area (5.0 × 5.0 cm) and can be operated up to 80°C and 6.0 A/cm2. Construction details and material selection for the designed test cell are given in this document. Furthermore, findings related to pressure distribution analyzed by utilizing a pressure‐sensitive foil, the cell performance indicated by polarization curves, and the reproducibility of results are described. Experimental data indicate the applicability of the presented testing device for relevant PEMWE component testing and material analysis.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.