{"title":"An improved lightweight network based on deep learning for grape recognition in unstructured environments","authors":"Bingpiao Liu, Yunzhi Zhang, Jinhai Wang, Lufeng Luo, Qinghua Lu, Huiling Wei, Wenbo Zhu","doi":"10.1016/j.inpa.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>In unstructured environments, dense grape fruit growth and the presence of occlusion cause difficult recognition problems, which will seriously affect the performance of grape picking robots. To address these problems, this study improves the YOLOX-Tiny model and proposes a new grape detection model, YOLOX-RA, which can quickly and accurately identify densely growing and occluded grape bunches. The proposed YOLOX-RA model uses a 3 × 3 convolutional layer with a step size of 2 to replace the focal layer to reduce the computational burden. The CBS layer in the ResBlock_Body module of the second, third, and fourth layers of the backbone layer is removed, and the CSPLayer module is replaced by the ResBlock-M module to speed up the detection. An auxiliary network (AlNet) with the remaining network blocks was added after the ResBlock-M module to improve the detection accuracy. Two depth-separable convolutions (DSC) are used in the neck module layer to replace the normal convolution to reduce the computational cost. We evaluated the detection performance of SSD, YOLOv4 SSD, YOLOv4-Tiny, YOLO-Grape, YOLOv5-X, YOLOX-Tiny, and YOLOX-RA on a grape test set. The results show that the YOLOX-RA model has the best detection performance, achieving 88.75 % mAP, a recognition speed of 84.88 FPS, and model size of 17.53 MB. It can accurately detect densely grown and shaded grape bunches, which can effectively improve the performance of the grape picking robot.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 2","pages":"Pages 202-216"},"PeriodicalIF":7.7000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000136/pdfft?md5=09e056f7c87eb9309cb1cba9644ac80b&pid=1-s2.0-S2214317323000136-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317323000136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In unstructured environments, dense grape fruit growth and the presence of occlusion cause difficult recognition problems, which will seriously affect the performance of grape picking robots. To address these problems, this study improves the YOLOX-Tiny model and proposes a new grape detection model, YOLOX-RA, which can quickly and accurately identify densely growing and occluded grape bunches. The proposed YOLOX-RA model uses a 3 × 3 convolutional layer with a step size of 2 to replace the focal layer to reduce the computational burden. The CBS layer in the ResBlock_Body module of the second, third, and fourth layers of the backbone layer is removed, and the CSPLayer module is replaced by the ResBlock-M module to speed up the detection. An auxiliary network (AlNet) with the remaining network blocks was added after the ResBlock-M module to improve the detection accuracy. Two depth-separable convolutions (DSC) are used in the neck module layer to replace the normal convolution to reduce the computational cost. We evaluated the detection performance of SSD, YOLOv4 SSD, YOLOv4-Tiny, YOLO-Grape, YOLOv5-X, YOLOX-Tiny, and YOLOX-RA on a grape test set. The results show that the YOLOX-RA model has the best detection performance, achieving 88.75 % mAP, a recognition speed of 84.88 FPS, and model size of 17.53 MB. It can accurately detect densely grown and shaded grape bunches, which can effectively improve the performance of the grape picking robot.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining