{"title":"Evaluation of the Signal Power Spectrum in Directional Receiving Systems","authors":"V. Ignatkin, O. Saragtov","doi":"10.33955/2307-2180(5)2019.49-51","DOIUrl":null,"url":null,"abstract":"Розглянуто алгоритм, який дозволяє для дискретної вибірки із N значень на проміжку часу [–T/2, +T/2] оцінювати спектр потужності за допомогою фільтра з тією ж самою вузькою спектральною смугою у прямокутному часовому вікні, але з рівнем бічних пелюсток, менших на 4,3 дБ. Наведено приклади декількох «енергетичних» фільтрів. При цьому показано відгуки енергетичного фільтра порівняно з фільтром на основі традиційних часових вікон. Виникають можливості керування як шириною смуги фільтра, так і формою його вершини. Також суттєво збільшується розмірність простору змінних варіювання. \nСтосовно спектрального аналізу, йдеться відносно випадку, коли перетворення Фур’є виконується з двома різними часовими вікнами у часі. \nПідсумок формується із множників дійсних \nі недійсних частин першого та другого перетворення. При цьому не потрібно певних оптимальних властивостей від кожного із часових вікон, окремо оптимізується тільки кінцевий підсумок. Це ефективно, якщо одне із часових вікон нагадує вікно Кайзера-Бесселя. При цьому проведення згортки після перетворення Фур’є стає трудомістким, потребує багато обчислювальних операцій, та часове вікно краще використовувати безпосередньо до сигналу, який аналізується перед перетворенням Фур’є. \nДля таких часових вікон будування «енергетичного» фільтра збільшує час аналізу приблизно у два рази. Але швидкість обчислювань не завжди є визначальним фактором, а сумісне використання двох різних вікон замість одного розширює можливості аналізу. \nРезультати роботи можуть бути використані під час фільтрації приймальної потужності сигналу для різних систем, зокрема, для систем з максимальним придушенням шумової завади. \nПерспективно оптимізувати приймальну систему з горизонтальним робочим напрямком приймання. Задачу оптимізації у цьому випадку вирішують з урахуванням робочого діапазону як для середньої, так і для максимальної завади.","PeriodicalId":52864,"journal":{"name":"Metrologiia ta priladi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrologiia ta priladi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33955/2307-2180(5)2019.49-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Розглянуто алгоритм, який дозволяє для дискретної вибірки із N значень на проміжку часу [–T/2, +T/2] оцінювати спектр потужності за допомогою фільтра з тією ж самою вузькою спектральною смугою у прямокутному часовому вікні, але з рівнем бічних пелюсток, менших на 4,3 дБ. Наведено приклади декількох «енергетичних» фільтрів. При цьому показано відгуки енергетичного фільтра порівняно з фільтром на основі традиційних часових вікон. Виникають можливості керування як шириною смуги фільтра, так і формою його вершини. Також суттєво збільшується розмірність простору змінних варіювання.
Стосовно спектрального аналізу, йдеться відносно випадку, коли перетворення Фур’є виконується з двома різними часовими вікнами у часі.
Підсумок формується із множників дійсних
і недійсних частин першого та другого перетворення. При цьому не потрібно певних оптимальних властивостей від кожного із часових вікон, окремо оптимізується тільки кінцевий підсумок. Це ефективно, якщо одне із часових вікон нагадує вікно Кайзера-Бесселя. При цьому проведення згортки після перетворення Фур’є стає трудомістким, потребує багато обчислювальних операцій, та часове вікно краще використовувати безпосередньо до сигналу, який аналізується перед перетворенням Фур’є.
Для таких часових вікон будування «енергетичного» фільтра збільшує час аналізу приблизно у два рази. Але швидкість обчислювань не завжди є визначальним фактором, а сумісне використання двох різних вікон замість одного розширює можливості аналізу.
Результати роботи можуть бути використані під час фільтрації приймальної потужності сигналу для різних систем, зокрема, для систем з максимальним придушенням шумової завади.
Перспективно оптимізувати приймальну систему з горизонтальним робочим напрямком приймання. Задачу оптимізації у цьому випадку вирішують з урахуванням робочого діапазону як для середньої, так і для максимальної завади.