Nonlinear Partial Dierential Equations Model Related to Oxidation Pond Treatment System: A Case Study of mPHO at Taman Timor Oxidation Pond, Johor Bahru
{"title":"Nonlinear Partial Dierential Equations Model Related to Oxidation Pond Treatment System: A Case Study of mPHO at Taman Timor Oxidation Pond, Johor Bahru","authors":"A. Hamzah, A. H. Murid","doi":"10.11113/MATEMATIKA.V34.N2.1038","DOIUrl":null,"url":null,"abstract":"This study presents a mathematical model examining wastewater pollutant removalthrough an oxidation pond treatment system. This model was developed to describethe reaction between microbe-based product mPHO (comprising Phototrophic bac-teria (PSB)), dissolved oxygen (DO) and pollutant namely chemical oxygen demand(COD). It consists of coupled advection-diusion-reaction equations for the microor-ganism (PSB), DO and pollutant (COD) concentrations, respectively. The couplingof these equations occurred due to the reactions between PSB, DO and COD to pro-duce harmless compounds. Since the model is nonlinear partial dierential equations(PDEs), coupled, and dynamic, computational algorithm with a specic numericalmethod, which is implicit Crank-Nicolson method, was employed to simulate the dy-namical behaviour of the system. Furthermore, numerical results revealed that theproposed model demonstrated high accuracy when compared to the experimental data.Keywords Oxidation pond; nonlinear PDEs; PSB; implicit Crank-Nicolson.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N2.1038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
This study presents a mathematical model examining wastewater pollutant removalthrough an oxidation pond treatment system. This model was developed to describethe reaction between microbe-based product mPHO (comprising Phototrophic bac-teria (PSB)), dissolved oxygen (DO) and pollutant namely chemical oxygen demand(COD). It consists of coupled advection-diusion-reaction equations for the microor-ganism (PSB), DO and pollutant (COD) concentrations, respectively. The couplingof these equations occurred due to the reactions between PSB, DO and COD to pro-duce harmless compounds. Since the model is nonlinear partial dierential equations(PDEs), coupled, and dynamic, computational algorithm with a specic numericalmethod, which is implicit Crank-Nicolson method, was employed to simulate the dy-namical behaviour of the system. Furthermore, numerical results revealed that theproposed model demonstrated high accuracy when compared to the experimental data.Keywords Oxidation pond; nonlinear PDEs; PSB; implicit Crank-Nicolson.