Numerical Study of the Ejection Cooling Mechanism of Ventilation for a Marine Gas Turbine Enclosure

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE Polish Maritime Research Pub Date : 2022-09-01 DOI:10.2478/pomr-2022-0032
Hong Shi, Qianwei Zhang, M. Liu, Kaijie Yang, Jie Yuan
{"title":"Numerical Study of the Ejection Cooling Mechanism of Ventilation for a Marine Gas Turbine Enclosure","authors":"Hong Shi, Qianwei Zhang, M. Liu, Kaijie Yang, Jie Yuan","doi":"10.2478/pomr-2022-0032","DOIUrl":null,"url":null,"abstract":"Abstract A marine gas turbine enclosure must be designed to prevent overheating of the electrical and engine control components as well as diluting potential fuel leaks. In order to achieve an optimal enclosure design, a numerical study of the ventilation-ejection cooling mechanism of a gas turbine enclosure is carried out in this paper. The evaluation index of the ejection cooling performance is first proposed and the algorithm of numerical simulation is verified. On this basis, orthogonal combinations of structural parameters are carried out for the expansion angle α of the lobed nozzle and the spacing S between the outlet plane of the lobed nozzle and the inlet plane of the mixing tube. The flow and the temperature distribution inside the enclosure are analysed under different operating conditions. The results show that the influence of the lobed nozzle expansion angle α and the spacing S on the performance is not a single-valued function but the two influencing factors are mutually constrained and influenced by each other. For any spacing, the combined coefficient is optimal for the expansion angle α = 30°. When the expansion angle α = 45° and the spacing S = 100 mm, the combined coefficient and the temperature distribution inside the enclosure are optimal at the same time.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"119 - 127"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0032","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract A marine gas turbine enclosure must be designed to prevent overheating of the electrical and engine control components as well as diluting potential fuel leaks. In order to achieve an optimal enclosure design, a numerical study of the ventilation-ejection cooling mechanism of a gas turbine enclosure is carried out in this paper. The evaluation index of the ejection cooling performance is first proposed and the algorithm of numerical simulation is verified. On this basis, orthogonal combinations of structural parameters are carried out for the expansion angle α of the lobed nozzle and the spacing S between the outlet plane of the lobed nozzle and the inlet plane of the mixing tube. The flow and the temperature distribution inside the enclosure are analysed under different operating conditions. The results show that the influence of the lobed nozzle expansion angle α and the spacing S on the performance is not a single-valued function but the two influencing factors are mutually constrained and influenced by each other. For any spacing, the combined coefficient is optimal for the expansion angle α = 30°. When the expansion angle α = 45° and the spacing S = 100 mm, the combined coefficient and the temperature distribution inside the enclosure are optimal at the same time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
船用燃气轮机机壳通风喷射冷却机理的数值研究
船用燃气轮机外壳必须设计成防止电气和发动机控制部件过热以及稀释潜在的燃料泄漏。为了实现燃气轮机机壳的优化设计,本文对某型燃气轮机机壳的通风-喷射冷却机理进行了数值研究。首次提出了喷射冷却性能的评价指标,并对数值模拟算法进行了验证。在此基础上,对叶状喷嘴的膨胀角α和叶状喷嘴出口平面与混合管进口平面的间距S进行了结构参数的正交组合。分析了不同工况下箱体内的流量和温度分布。结果表明,叶状喷管膨胀角α和间距S对性能的影响不是单值函数,而是相互制约、相互影响的。对于任意间距,当膨胀角α = 30°时,复合系数最优。当膨胀角α = 45°,膨胀间距S = 100 mm时,复合系数与箱体内温度分布同时最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
期刊最新文献
Exploration of a Model Thermoacoustic Turbogenerator with a Bidirectional Turbine Computer-Aided System for Layout of Fire Hydrants on Boards Designed Vessel Using the Particle Swarm Optimization Algorithm Optimal UV Quantity for a Ballast Water Treatment System for Compliance with Imo Standards Human Resource Management Digitalisation in Multidisciplinary Ship Design Companies Effects of Sway and Roll Excitations on Sloshing Loads in a KC-1 Membrane LNG Tank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1