Low-cost and scalable sub-ambient radiative cooling porous films

IF 1.5 4区 工程技术 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Photonics for Energy Pub Date : 2023-01-01 DOI:10.1117/1.JPE.13.015501
Bin Li, Boyu Cao, Ruichen Song, Yetao Zhong, Changhao Chen, Hengren Hu, Shigang Wu, Zhilin Xia
{"title":"Low-cost and scalable sub-ambient radiative cooling porous films","authors":"Bin Li, Boyu Cao, Ruichen Song, Yetao Zhong, Changhao Chen, Hengren Hu, Shigang Wu, Zhilin Xia","doi":"10.1117/1.JPE.13.015501","DOIUrl":null,"url":null,"abstract":"Abstract. Passive radiative cooling is an environmentally friendly and energy-free cooling method, but the practical application of radiative cooling materials is still limited by high costs and cumbersome preparation processes. Here, low-cost and chemically stable polyvinylidene fluoride (PVDF) was selected as the raw material and porous P-PVDF films for daytime radiative cooling were prepared by a simple phase separation method. A solar reflectivity of 95.6% and an atmospheric window emissivity of 99.1% were obtained, resulting in high-performance radiative cooling without a metal reflective layer. A cooling power of 69.43  W  ·  m  −  2 was achieved in direct sunlight, achieving sub-ambient cooling of 4.2°C. This work provides a unique solution for radiative cooling materials, which is expected to be implemented in practical applications of passive radiative cooling.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"13 1","pages":"015501 - 015501"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.13.015501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Passive radiative cooling is an environmentally friendly and energy-free cooling method, but the practical application of radiative cooling materials is still limited by high costs and cumbersome preparation processes. Here, low-cost and chemically stable polyvinylidene fluoride (PVDF) was selected as the raw material and porous P-PVDF films for daytime radiative cooling were prepared by a simple phase separation method. A solar reflectivity of 95.6% and an atmospheric window emissivity of 99.1% were obtained, resulting in high-performance radiative cooling without a metal reflective layer. A cooling power of 69.43  W  ·  m  −  2 was achieved in direct sunlight, achieving sub-ambient cooling of 4.2°C. This work provides a unique solution for radiative cooling materials, which is expected to be implemented in practical applications of passive radiative cooling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低成本、可扩展的亚环境辐射冷却多孔膜
摘要被动辐射冷却是一种环保、无能源的冷却方法,但辐射冷却材料的实际应用仍然受到高成本和繁琐制备工艺的限制。本文以低成本、化学稳定的聚偏氟乙烯(PVDF)为原料,采用简单的相分离方法制备了用于日间辐射冷却的多孔P-PVDF薄膜。获得了95.6%的太阳反射率和99.1%的大气窗口发射率,从而在没有金属反射层的情况下实现了高性能的辐射冷却。冷却功率69.43  W  ·  m  −  2在阳光直射下实现,实现了4.2°C的亚环境冷却。这项工作为辐射冷却材料提供了一种独特的解决方案,有望在被动辐射冷却的实际应用中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Photonics for Energy
Journal of Photonics for Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
3.20
自引率
5.90%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.
期刊最新文献
Techno-economic analysis of a solar thermophotovoltaic system for a residential building Solar-pumped composite YAG/Ce:Nd:YAG/YAG laser with reduced thermal effects Thermodynamic figure of merit for thermophotovoltaics Main performance metrics of thermophotovoltaic devices: analyzing the state of the art Luminescent coupling effect in InGaP/GaAs/InGaAs inverted metamorphic triple-junction solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1