{"title":"A novel approach of multi-loop control based-ADRC for improving lower knee position exoskeleton system","authors":"N. A. Alawad, A. Humaidi, Ahmed S Alaraji","doi":"10.1556/1848.2023.00546","DOIUrl":null,"url":null,"abstract":"This study revealed the system of a lower limb exoskeleton created for knee rehabilitation. The exoskeleton has been extensively used in rehabilitation robotic device research, but its practical applicability is limited due to its high nonlinearity and uncertain behavior. As a result, the control technique is critical in increasing the efficacy of rehabilitation devices. For the rehabilitation and help of a patient with a lower-limb condition, a sliding mode control (SMC) with proportional derivative (PD) control approach are used as parallel loops. Active disturbances rejection control (ADRC) is used by these controllers to cancel any external influences. To overcome the degradation of disturbance rejection and robustness caused by a failure to fully adjust for the entire disturbance, a (SMC) loop was introduced to the control regulation. By assessing performance indices related to the estimated inaccuracy, the results demonstrate the effectiveness of the suggested controller. Simulink is used for simulation and analysis.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This study revealed the system of a lower limb exoskeleton created for knee rehabilitation. The exoskeleton has been extensively used in rehabilitation robotic device research, but its practical applicability is limited due to its high nonlinearity and uncertain behavior. As a result, the control technique is critical in increasing the efficacy of rehabilitation devices. For the rehabilitation and help of a patient with a lower-limb condition, a sliding mode control (SMC) with proportional derivative (PD) control approach are used as parallel loops. Active disturbances rejection control (ADRC) is used by these controllers to cancel any external influences. To overcome the degradation of disturbance rejection and robustness caused by a failure to fully adjust for the entire disturbance, a (SMC) loop was introduced to the control regulation. By assessing performance indices related to the estimated inaccuracy, the results demonstrate the effectiveness of the suggested controller. Simulink is used for simulation and analysis.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.