A leaf image localization based algorithm for different crops disease classification

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2022-09-01 DOI:10.1016/j.inpa.2021.03.001
Yashwant Kurmi , Suchi Gangwar (Corresponding Author)
{"title":"A leaf image localization based algorithm for different crops disease classification","authors":"Yashwant Kurmi ,&nbsp;Suchi Gangwar (Corresponding Author)","doi":"10.1016/j.inpa.2021.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Agricultural crop production is a major contributing element to any country’s economy. To maintain the economic growth of any country plants disease detection is a leading factor in agriculture. The contribution of the proposed algorithm is to optimize the extracted information from the available resources for the betterment of the result without any additional complexity. The proposed technique basically localizes the leaf region prior to the image classification into healthy and diseased. The novelty of this work is to fuse the information extracted from the available resources and optimize it to enhance the expected outcome. The leaf colors are analyzed using color transformation for the seed region identification. The mapping of a low-dimensional RGB color image into L*a*b color space provides an expansion of the spectral range. The neighboring pixels-based leaf region growing is applied on the initial seeds. In order to refine the leaf boundary and the disease-affected areas, we employed a random sample consensus (RANSAC) for suitable curve fitting. The feature sets using bag of visual words, Fisher vectors, and handcrafted features are extracted followed by classification using logistic regression, multilayer perceptron model, and support vector machine. The performance of the proposal is analyzed through PlantVillage datasets of apple, bell pepper, cherry, corn, grape, potato, and tomato. The simulation-based analysis of the proposed contextualization-based image categorization process outperforms as compared with the state of arts. The proposed approach provides average accuracy and area under the curve of 0.932 and 0.903, respectively.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 3","pages":"Pages 456-474"},"PeriodicalIF":7.7000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.03.001","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221431732100024X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

Abstract

Agricultural crop production is a major contributing element to any country’s economy. To maintain the economic growth of any country plants disease detection is a leading factor in agriculture. The contribution of the proposed algorithm is to optimize the extracted information from the available resources for the betterment of the result without any additional complexity. The proposed technique basically localizes the leaf region prior to the image classification into healthy and diseased. The novelty of this work is to fuse the information extracted from the available resources and optimize it to enhance the expected outcome. The leaf colors are analyzed using color transformation for the seed region identification. The mapping of a low-dimensional RGB color image into L*a*b color space provides an expansion of the spectral range. The neighboring pixels-based leaf region growing is applied on the initial seeds. In order to refine the leaf boundary and the disease-affected areas, we employed a random sample consensus (RANSAC) for suitable curve fitting. The feature sets using bag of visual words, Fisher vectors, and handcrafted features are extracted followed by classification using logistic regression, multilayer perceptron model, and support vector machine. The performance of the proposal is analyzed through PlantVillage datasets of apple, bell pepper, cherry, corn, grape, potato, and tomato. The simulation-based analysis of the proposed contextualization-based image categorization process outperforms as compared with the state of arts. The proposed approach provides average accuracy and area under the curve of 0.932 and 0.903, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于叶片图像定位的不同作物病害分类算法
农作物生产是任何国家经济的主要贡献因素。维持任何一个国家的经济增长,植物病害检测都是农业的主导因素。该算法的贡献是在不增加任何复杂性的情况下,从可用资源中优化提取的信息,以改善结果。该方法在对图像进行健康和病变分类之前,基本上对叶片区域进行了定位。这项工作的新颖之处在于融合从可用资源中提取的信息并对其进行优化以提高预期结果。利用颜色变换分析叶片颜色,进行种子区域识别。将低维RGB彩色图像映射到L*a*b彩色空间提供了光谱范围的扩展。在初始种子上应用基于相邻像素的叶片区域生长。为了细化叶片边界和病区,我们采用随机样本共识(RANSAC)进行合适的曲线拟合。使用视觉词袋、Fisher向量和手工特征提取特征集,然后使用逻辑回归、多层感知器模型和支持向量机进行分类。通过苹果、甜椒、樱桃、玉米、葡萄、土豆和番茄的PlantVillage数据集分析了该提案的性能。所提出的基于上下文化的图像分类过程的基于仿真的分析与目前的技术水平相比表现优异。该方法的平均精度和曲线下面积分别为0.932和0.903。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Artificial intelligence solutions to reduce information asymmetry for Colombian cocoa small-scale farmers Automated detection of sugarcane crop lines from UAV images using deep learning Detection and counting method of juvenile abalones based on improved SSD network Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1