Hung-Cuong Nguyen, Thi-Hao Nguyen, Jakub Nowak, A. Byrski, A. Siwocha, Van-Hung Le
{"title":"Combined YOLOv5 and HRNet for High Accuracy 2D Keypoint and Human Pose Estimation","authors":"Hung-Cuong Nguyen, Thi-Hao Nguyen, Jakub Nowak, A. Byrski, A. Siwocha, Van-Hung Le","doi":"10.2478/jaiscr-2022-0019","DOIUrl":null,"url":null,"abstract":"Abstract Two-dimensional human pose estimation has been widely applied in real-world applications such as sports analysis, medical fall detection, human-robot interaction, with many positive results obtained utilizing Convolutional Neural Networks (CNNs). Li et al. at CVPR 2020 proposed a study in which they achieved high accuracy in estimating 2D keypoints estimation/2D human pose estimation. However, the study performed estimation only on the cropped human image data. In this research, we propose a method for automatically detecting and estimating human poses in photos using a combination of YOLOv5 + CC (Contextual Constraints) and HRNet. Our approach inherits the speed of the YOLOv5 for detecting humans and the efficiency of the HRNet for estimating 2D keypoints/2D human pose on the images. We also performed human marking on the images by bounding boxes of the Human 3.6M dataset (Protocol #1) for human detection evaluation. Our approach obtained high detection results in the image and the processing time is 55 FPS on the Human 3.6M dataset (Protocol #1). The mean error distance is 5.14 pixels on the full size of the image (1000 × 1002). In particular, the average results of 2D human pose estimation/2D keypoints estimation are 94.8% of PCK and 99.2% of PDJ@0.4 (head joint). The results are available.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"12 1","pages":"281 - 298"},"PeriodicalIF":3.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2022-0019","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Two-dimensional human pose estimation has been widely applied in real-world applications such as sports analysis, medical fall detection, human-robot interaction, with many positive results obtained utilizing Convolutional Neural Networks (CNNs). Li et al. at CVPR 2020 proposed a study in which they achieved high accuracy in estimating 2D keypoints estimation/2D human pose estimation. However, the study performed estimation only on the cropped human image data. In this research, we propose a method for automatically detecting and estimating human poses in photos using a combination of YOLOv5 + CC (Contextual Constraints) and HRNet. Our approach inherits the speed of the YOLOv5 for detecting humans and the efficiency of the HRNet for estimating 2D keypoints/2D human pose on the images. We also performed human marking on the images by bounding boxes of the Human 3.6M dataset (Protocol #1) for human detection evaluation. Our approach obtained high detection results in the image and the processing time is 55 FPS on the Human 3.6M dataset (Protocol #1). The mean error distance is 5.14 pixels on the full size of the image (1000 × 1002). In particular, the average results of 2D human pose estimation/2D keypoints estimation are 94.8% of PCK and 99.2% of PDJ@0.4 (head joint). The results are available.
期刊介绍:
Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.