Tidal drag and westward drift of the lithosphere

IF 8.5 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscience frontiers Pub Date : 2023-04-27 DOI:10.1016/j.gsf.2023.101623
Vincenzo Nesi , Oscar Bruno , Davide Zaccagnino , Corrado Mascia , Carlo Doglioni
{"title":"Tidal drag and westward drift of the lithosphere","authors":"Vincenzo Nesi ,&nbsp;Oscar Bruno ,&nbsp;Davide Zaccagnino ,&nbsp;Corrado Mascia ,&nbsp;Carlo Doglioni","doi":"10.1016/j.gsf.2023.101623","DOIUrl":null,"url":null,"abstract":"<div><p>Tidal forces are generally neglected in the discussion about the mechanisms driving plate tectonics despite a worldwide geodynamic asymmetry also observed at subduction and rift zones. The tidal drag could theoretically explain the westerly shift of the lithosphere relative to the underlying mantle. Notwithstanding, viscosity in the asthenosphere is apparently too high to allow mechanical decoupling produced by tidal forces. Here, we propose a model for global scale geodynamics accompanied by numerical simulations of the tidal interaction of the Earth with the Moon and the Sun. We provide for the first time a theoretical proof that the tidal drag can produce a westerly motion of the lithosphere, also compatible with the slowing of the Earth’s rotational spin. Our results suggest a westerly rotation of the lithosphere with a lower bound of <span><math><mrow><mi>ω</mi><mo>≈</mo><mo>(</mo><mn>0.1</mn><mo>-</mo><mn>0.2</mn><mo>)</mo><mi>°</mi></mrow></math></span>/Myr in the presence of a basal effective shear viscosity <span><math><mrow><mi>η</mi><mo>≈</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>16</mn></mrow></msup></mrow></math></span> Pa<span><math><mrow><mo>·</mo></mrow></math></span>s, but it may rise to <span><math><mrow><mi>ω</mi><mo>&gt;</mo><mn>1</mn><mi>°</mi></mrow></math></span>/Myr with a viscosity of <span><math><mrow><mi>η</mi><mspace></mspace><mi>≲</mi><mspace></mspace><mn>3</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>14</mn></mrow></msup></mrow></math></span> Pa<span><math><mrow><mo>·</mo></mrow></math></span>s within the Low-Velocity Zone (LVZ) atop the asthenosphere. This faster velocity would be more compatible with the mainstream of plate motion and the global asymmetry at plate boundaries. Based on these computations, we suggest that the super-adiabatic asthenosphere, being vigorously convecting, may further reduce the viscous coupling within the LVZ. Therefore, the combination of solid Earth tides, ultra-low viscosity LVZ and asthenospheric polarized small-scale convection may mechanically satisfy the large-scale decoupling of the lithosphere relative to the underlying mantle. Relative plate motions are explained because of lateral viscosity heterogeneities at the base of the lithosphere, which determine variable lithosphere-asthenosphere decoupling and plate interactions, hence plate tectonics.</p></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987123000907","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Tidal forces are generally neglected in the discussion about the mechanisms driving plate tectonics despite a worldwide geodynamic asymmetry also observed at subduction and rift zones. The tidal drag could theoretically explain the westerly shift of the lithosphere relative to the underlying mantle. Notwithstanding, viscosity in the asthenosphere is apparently too high to allow mechanical decoupling produced by tidal forces. Here, we propose a model for global scale geodynamics accompanied by numerical simulations of the tidal interaction of the Earth with the Moon and the Sun. We provide for the first time a theoretical proof that the tidal drag can produce a westerly motion of the lithosphere, also compatible with the slowing of the Earth’s rotational spin. Our results suggest a westerly rotation of the lithosphere with a lower bound of ω(0.1-0.2)°/Myr in the presence of a basal effective shear viscosity η1016 Pa·s, but it may rise to ω>1°/Myr with a viscosity of η3×1014 Pa·s within the Low-Velocity Zone (LVZ) atop the asthenosphere. This faster velocity would be more compatible with the mainstream of plate motion and the global asymmetry at plate boundaries. Based on these computations, we suggest that the super-adiabatic asthenosphere, being vigorously convecting, may further reduce the viscous coupling within the LVZ. Therefore, the combination of solid Earth tides, ultra-low viscosity LVZ and asthenospheric polarized small-scale convection may mechanically satisfy the large-scale decoupling of the lithosphere relative to the underlying mantle. Relative plate motions are explained because of lateral viscosity heterogeneities at the base of the lithosphere, which determine variable lithosphere-asthenosphere decoupling and plate interactions, hence plate tectonics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
岩石圈的潮汐拖曳和向西漂移
在讨论驱动板块构造的机制时,潮汐力通常被忽略,尽管在俯冲带和裂谷带也观察到世界范围内的地球动力学不对称。从理论上讲,潮汐阻力可以解释岩石圈相对于底层地幔的西风移动。尽管如此,软流层的粘度显然太高,不允许潮汐力产生机械解耦。在这里,我们提出了一个全球尺度的地球动力学模型,伴随着地球与月球和太阳潮汐相互作用的数值模拟。我们第一次提供了一个理论证明,潮汐阻力可以产生岩石圈的西风运动,也与地球自转的减慢相一致。研究结果表明,在基底有效剪切粘度η≈1016 Pa·s的情况下,岩石圈的西向旋转下界为ω≈(0.1-0.2)°/Myr,但在软流层顶部的低速带(LVZ)内,当有效剪切粘度η≤3×1014 Pa·s时,岩石圈的西向旋转下界可能上升到ω和gt;1°/Myr。这种更快的速度将更符合板块运动的主流和板块边界的全球不对称性。基于这些计算,我们认为超绝热软流层的强对流可能会进一步降低LVZ内的粘性耦合。因此,固体地球潮汐、超低粘度LVZ和软流圈极化小尺度对流的组合可以机械地满足岩石圈相对于下伏地幔的大尺度解耦。岩石圈底部的横向黏度非均质性解释了板块的相对运动,这决定了岩石圈-软流圈的解耦和板块的相互作用,从而决定了板块构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscience frontiers
Geoscience frontiers Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍: Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.
期刊最新文献
Evaluation of gas content in organic-rich shale: A review of the history, current status, and future directions Earth’s tectonic and plate boundary evolution over 1.8 billion years Spatio-temporal analysis of Permian-Cretaceous magmatic activities in the Tengchong block: Implications for tectono-magmatic evolution Multifaceted natural resources and green energy transformation for sustainable industrial development Constraints on the spin-state transition of siderite from laboratory-based Raman spectroscopy and electrical conductivity under high temperature and high pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1