Guanghui Yu , Chunhong Liu , Yingying Zheng , Yingyi Chen , Daoliang Li , Wei Qin
{"title":"Meta-analysis in the production chain of aquaculture: A review","authors":"Guanghui Yu , Chunhong Liu , Yingying Zheng , Yingyi Chen , Daoliang Li , Wei Qin","doi":"10.1016/j.inpa.2021.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Meta-analysis is a statistical analysis of the data obtained from multiple studies and provides a quantitative synthesis of research results. It can be a key tool for facilitating rapid progress in aquaculture by quantifying what is known and identifying what is not yet known. However, due to the complexity of the environment and problems associated with the use of model in aquaculture, it remain few guidelines for the design, implementation or interpretation of meta-analysis in the field of aquaculture. Here, we first briefly reviewed the history of meta-analysis, then summarized the applications of meta-analysis in terms of major procedures, standards, and methods. Next, we critically reviewed the results of meta-analysis studies in the production chain of aquaculture and identified the potentials for improving yield in both quantity and quality. Overall, there is a large room for improving yield along the production chain. Large contributions can be found in breeding, feed, and farm management. For example, improving breeding can increase yield by 5.6% to 49%, depending on fish species and type of improvements. This study revealed large potentials for improving yield in the production chain of aquaculture and summarized the application of meta-analysis in aquaculture. Some recommendations of standardizing and improving meta-analysis in aquaculture were proposed.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 586-598"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.04.002","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Meta-analysis is a statistical analysis of the data obtained from multiple studies and provides a quantitative synthesis of research results. It can be a key tool for facilitating rapid progress in aquaculture by quantifying what is known and identifying what is not yet known. However, due to the complexity of the environment and problems associated with the use of model in aquaculture, it remain few guidelines for the design, implementation or interpretation of meta-analysis in the field of aquaculture. Here, we first briefly reviewed the history of meta-analysis, then summarized the applications of meta-analysis in terms of major procedures, standards, and methods. Next, we critically reviewed the results of meta-analysis studies in the production chain of aquaculture and identified the potentials for improving yield in both quantity and quality. Overall, there is a large room for improving yield along the production chain. Large contributions can be found in breeding, feed, and farm management. For example, improving breeding can increase yield by 5.6% to 49%, depending on fish species and type of improvements. This study revealed large potentials for improving yield in the production chain of aquaculture and summarized the application of meta-analysis in aquaculture. Some recommendations of standardizing and improving meta-analysis in aquaculture were proposed.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining