Stepping Up the Personalized Approach in COPD with Machine Learning

IF 0.2 Q4 RESPIRATORY SYSTEM Current Respiratory Medicine Reviews Pub Date : 2023-06-07 DOI:10.2174/1573398x19666230607115316
E. Mekov, M. Miravitlles, M. Topalovic, A. Singanayagam, Rosen Petkov
{"title":"Stepping Up the Personalized Approach in COPD with Machine Learning","authors":"E. Mekov, M. Miravitlles, M. Topalovic, A. Singanayagam, Rosen Petkov","doi":"10.2174/1573398x19666230607115316","DOIUrl":null,"url":null,"abstract":"\n\nThere is increasing interest in the application of artificial intelligence (AI) and machine learning (ML) in all fields of medicine to facilitate greater personalisation of management.\n\n\n\nML could be the next step of personalized medicine in chronic obstructive pulmonary disease (COPD) by giving the exact risk (risk for exacerbation, death, etc.) of every patient (based on his/her parameters like lung function, clinical data, demographics, previous exacerbations, etc.), thus providing a prognosis/risk for the specific patient based on individual characteristics (individual approach).\n\n\n\nML algorithm might utilise some traditional risk factors along with some others that may be location-specific (e.g. the risk of exacerbation thatmay be related to ambient pollution but that could vary massively between different countries, or between different regions of a particular country).\n\n\n\nThis is a step forward from the commonly used assignment of patients to a specific group for which prognosis/risk data are available (group approach).\n","PeriodicalId":44030,"journal":{"name":"Current Respiratory Medicine Reviews","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Respiratory Medicine Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573398x19666230607115316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

There is increasing interest in the application of artificial intelligence (AI) and machine learning (ML) in all fields of medicine to facilitate greater personalisation of management. ML could be the next step of personalized medicine in chronic obstructive pulmonary disease (COPD) by giving the exact risk (risk for exacerbation, death, etc.) of every patient (based on his/her parameters like lung function, clinical data, demographics, previous exacerbations, etc.), thus providing a prognosis/risk for the specific patient based on individual characteristics (individual approach). ML algorithm might utilise some traditional risk factors along with some others that may be location-specific (e.g. the risk of exacerbation thatmay be related to ambient pollution but that could vary massively between different countries, or between different regions of a particular country). This is a step forward from the commonly used assignment of patients to a specific group for which prognosis/risk data are available (group approach).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习加强COPD的个性化方法
人们对人工智能(AI)和机器学习(ML)在医学各个领域的应用越来越感兴趣,以促进更大的个性化管理。ML可能是慢性阻塞性肺疾病(COPD)个性化医疗的下一步,它可以给出每个患者的确切风险(加重风险、死亡风险等)(基于他/她的参数,如肺功能、临床数据、人口统计学、既往加重等),从而根据个体特征(个体方法)为特定患者提供预后/风险。机器学习算法可能会利用一些传统的风险因素以及其他一些可能是特定位置的风险因素(例如,可能与环境污染有关的恶化风险,但在不同国家或特定国家的不同地区之间可能会有很大差异)。这是从常用的将患者分配到可获得预后/风险数据的特定组(分组方法)的一个进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
53
期刊介绍: Current Respiratory Medicine Reviews publishes frontier reviews on all the latest advances on respiratory diseases and its related areas e.g. pharmacology, pathogenesis, clinical care, and therapy. The journal"s aim is to publish the highest quality review articles dedicated to clinical research in the field. The journal is essential reading for all researchers and clinicians in respiratory medicine.
期刊最新文献
Assessing Lung Function and Quality of Life in COVID-19 Patients: A Pilot Study Pulmonary Arterial Hypertension (PAH) Group 1 (Part A): Overview, Classification, Clinical Subsets, and Workup Deteriorating Pulmonary Functions in Patients with Rheumatoid Arthritis- A Pilot Study From South India COVID-19 Vaccines and the Menstrual Cycle: A Cross-Sectional Study NAT2 Gene Variants as a Provocative Factor for the Severe Course of COVID-19 Pneumonia in Ukrainian Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1