Vibration measurement by projection of phase-modulated and amplitude-modulated structured light

E. Barbosa, Luiz Felipe Gonçalves Dib, Marlene Correa Henrique, M. T. Saita
{"title":"Vibration measurement by projection of phase-modulated and amplitude-modulated structured light","authors":"E. Barbosa, Luiz Felipe Gonçalves Dib, Marlene Correa Henrique, M. T. Saita","doi":"10.22201/icat.24486736e.2023.21.1.1076","DOIUrl":null,"url":null,"abstract":"Most of the whole-field optical methods for vibration measurement have low sensitivity when the points of the studied surface vibrate with the same amplitude. Those techniques also usually require complex and/or expensive solutions which are difficult to implement in engineering processes when the vibration amplitudes are relatively high. In order to overcome those limitations we propose a method for out-of-plane vibration measurement which uses structured light projection. The vibrating surface is obliquely illuminated by straight and parallel interference fringes produced by a Twyman-Green interferometer with a 532-nm laser as light source. In order to enable fringe visualization two techniques were employed, namely, the phase modulation of the fringe pattern by using a vibrating mirror in the interferometer, and a stroboscopic illumination by using a Fabry-Perot etalon amplitude modulator. We demonstrated the technique by measuring the vibration amplitudes of small objects in the millimeter and submillimeter range.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.1.1076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the whole-field optical methods for vibration measurement have low sensitivity when the points of the studied surface vibrate with the same amplitude. Those techniques also usually require complex and/or expensive solutions which are difficult to implement in engineering processes when the vibration amplitudes are relatively high. In order to overcome those limitations we propose a method for out-of-plane vibration measurement which uses structured light projection. The vibrating surface is obliquely illuminated by straight and parallel interference fringes produced by a Twyman-Green interferometer with a 532-nm laser as light source. In order to enable fringe visualization two techniques were employed, namely, the phase modulation of the fringe pattern by using a vibrating mirror in the interferometer, and a stroboscopic illumination by using a Fabry-Perot etalon amplitude modulator. We demonstrated the technique by measuring the vibration amplitudes of small objects in the millimeter and submillimeter range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相位调制和振幅调制结构光投影振动测量
当研究表面的点以相同的振幅振动时,大多数用于振动测量的全场光学方法的灵敏度较低。这些技术通常还需要复杂和/或昂贵的解决方案,当振动幅度相对高时,这些解决方案难以在工程过程中实施。为了克服这些限制,我们提出了一种使用结构光投影的平面外振动测量方法。以532nm激光为光源的Twyman-Green干涉仪产生的直干涉条纹和平行干涉条纹倾斜照射振动表面。为了实现条纹可视化,采用了两种技术,即通过在干涉仪中使用振动镜对条纹图案进行相位调制,以及通过使用Fabry-Perot标准具振幅调制器进行频闪照明。我们通过测量毫米和亚毫米范围内的小物体的振幅来演示这项技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Research and Technology
Journal of Applied Research and Technology 工程技术-工程:电子与电气
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work. The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs. JART classifies research into the following main fields: -Material Science: Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors. -Computer Science: Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering. -Industrial Engineering: Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies -Electronic Engineering: Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation. -Instrumentation engineering and science: Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.
期刊最新文献
Use of recycled concrete and rice husk ash for concrete: A review Health assessment of welding by-products in a linear welding automation: Temperature and smoke concentration measurements matlab based graphical user interface for the monitoring and early detection of keratoconus Identification of geothermal potential zone associated with land surface temperature derived from Landsat 8 data using split-window algorithm Effect of microcarbon particle size and dispersion on the electrical conductivity of LLDPE-carbon composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1