Mirajkar Shriram J. , Vaidya Eknath R. , Suprasanna Penna
{"title":"High resolution melting (HRM)-based STMS marker analysis for rapid identification of radiation induced mutants of sugarcane","authors":"Mirajkar Shriram J. , Vaidya Eknath R. , Suprasanna Penna","doi":"10.1016/j.aggene.2018.04.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Molecular marker based selection has become the method of choice to find undiscoverable natural variations and induced mutations in plants. Routine gel based molecular marker screening procedures involve complex steps which require considerable investment of time, money and efforts. Most often, genomic configuration of a plant species complicates the ultimate output of such screening programme. Therefore, a reliable and rapid high-throughput method is required to facilitate ease in identification of variants in a large number of samples. Here we demonstrate the application of a high-resolution melting (HRM) method to detect </span>gamma radiation induced mutants of sugarcane (</span><span><em>Saccharum</em></span><span><span><span> spp.) which is a complex aneu-polyploidy plant. We have screened nine distinct mutants using sequence-tagged microsatellite site (STMS) markers and the analyses based on </span>gel electrophoresis and HRM curve were compared. All the six STMS microsatellite markers coupled with HRM analysis were found highly informative and generated a unique melting curve for each of the marker tested. Of these, two markers NKSCSSR 22 and NKSCSSR 42 exhibited differential melting curve among the mutants and these results were well correlated with the gel based banding pattern. Taken together these results highlighted potential of HRM based marker screening and demonstrated reliability and robustness in detecting induced mutations in a complex </span>polyploidy plant like sugarcane.</span></p></div>","PeriodicalId":37751,"journal":{"name":"Agri Gene","volume":"8 ","pages":"Pages 37-44"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aggene.2018.04.002","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agri Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352215118300084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Molecular marker based selection has become the method of choice to find undiscoverable natural variations and induced mutations in plants. Routine gel based molecular marker screening procedures involve complex steps which require considerable investment of time, money and efforts. Most often, genomic configuration of a plant species complicates the ultimate output of such screening programme. Therefore, a reliable and rapid high-throughput method is required to facilitate ease in identification of variants in a large number of samples. Here we demonstrate the application of a high-resolution melting (HRM) method to detect gamma radiation induced mutants of sugarcane (Saccharum spp.) which is a complex aneu-polyploidy plant. We have screened nine distinct mutants using sequence-tagged microsatellite site (STMS) markers and the analyses based on gel electrophoresis and HRM curve were compared. All the six STMS microsatellite markers coupled with HRM analysis were found highly informative and generated a unique melting curve for each of the marker tested. Of these, two markers NKSCSSR 22 and NKSCSSR 42 exhibited differential melting curve among the mutants and these results were well correlated with the gel based banding pattern. Taken together these results highlighted potential of HRM based marker screening and demonstrated reliability and robustness in detecting induced mutations in a complex polyploidy plant like sugarcane.
Agri GeneAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
自引率
0.00%
发文量
0
期刊介绍:
Agri Gene publishes papers that focus on the regulation, expression, function and evolution of genes in crop plants, farm animals, and agriculturally important insects and microorganisms. Agri Gene strives to be a diverse journal and topics in multiple fields will be considered for publication so long as their main focus is on agriculturally important organisms (plants, animals, insects, or microorganisms). Although not limited to the following, some examples of potential topics include: Gene discovery and characterization. Genetic markers to guide traditional breeding. Genetic effects of transposable elements. Evolutionary genetics, molecular evolution, population genetics, and phylogenetics. Profiling of gene expression and genetic variation. Biotechnology and crop or livestock improvement. Genetic improvement of biological control microorganisms. Genetic control of secondary metabolic pathways and metabolic enzymes of crop pathogens. Transcription analysis of beneficial or pest insect developmental stages Agri Gene encourages submission of novel manuscripts that present a reasonable level of analysis, functional relevance and/or mechanistic insight. Agri Gene also welcomes papers that have predominantly a descriptive component but improve the essential basis of knowledge for subsequent functional studies, or which provide important confirmation of recently published discoveries provided that the information is new.