Experimental and FE study of hybrid laminates aluminium carbon-fibre joints with different lay-up configurations

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Review Pub Date : 2020-12-01 DOI:10.1051/mfreview/2019027
R. Carbas, Miguel P. Palmares, L. D. da Silva
{"title":"Experimental and FE study of hybrid laminates aluminium carbon-fibre joints with different lay-up configurations","authors":"R. Carbas, Miguel P. Palmares, L. D. da Silva","doi":"10.1051/mfreview/2019027","DOIUrl":null,"url":null,"abstract":"The use of composite materials in industry is growing due to various technological advances in composite materials accompanied by improvements in the structural adhesives used to bond them. Fibre metal laminates (FML's) are hybrid composite structures based on thin sheets of metal alloys and plies of fibre-reinforced polymeric materials. The fibre/metal composite technology combines the advantages of metallic materials and fibre-reinforced matrix systems. The aim of the present study is to use a concept similar to that used in FML to increase the peel strength of composite materials and increase the joint strength of hybrid laminates aluminium carbon-fibre adhesive joints. Carbon fibre-reinforced plastic (CFRP) composites were modified by including one or several aluminium sheets during the laminate manufacture to enhance the composite through the thickness properties. The objective was to identify the joint configuration that gives the best joint strength improvement in relation to the CFRP only reference joint. An adhesive developed for the aeronautical industry was used to manufacture single lap joints for tensile testing. Experimental and numerical studies were undertaken on modified CFRP joints to investigate the joint strength of different lay-up solutions to prevent delamination of adherends.","PeriodicalId":51873,"journal":{"name":"Manufacturing Review","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/mfreview/2019027","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/mfreview/2019027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 10

Abstract

The use of composite materials in industry is growing due to various technological advances in composite materials accompanied by improvements in the structural adhesives used to bond them. Fibre metal laminates (FML's) are hybrid composite structures based on thin sheets of metal alloys and plies of fibre-reinforced polymeric materials. The fibre/metal composite technology combines the advantages of metallic materials and fibre-reinforced matrix systems. The aim of the present study is to use a concept similar to that used in FML to increase the peel strength of composite materials and increase the joint strength of hybrid laminates aluminium carbon-fibre adhesive joints. Carbon fibre-reinforced plastic (CFRP) composites were modified by including one or several aluminium sheets during the laminate manufacture to enhance the composite through the thickness properties. The objective was to identify the joint configuration that gives the best joint strength improvement in relation to the CFRP only reference joint. An adhesive developed for the aeronautical industry was used to manufacture single lap joints for tensile testing. Experimental and numerical studies were undertaken on modified CFRP joints to investigate the joint strength of different lay-up solutions to prevent delamination of adherends.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同铺层构型混合层合板铝碳纤维接头的试验与有限元研究
由于复合材料的各种技术进步以及用于粘合它们的结构粘合剂的改进,复合材料在工业中的使用正在增长。纤维-金属层压板(FML)是基于金属合金薄板和纤维增强聚合物材料层的混合复合材料结构。纤维/金属复合材料技术结合了金属材料和纤维增强基体系统的优点。本研究的目的是使用与FML中使用的概念类似的概念来提高复合材料的剥离强度,并提高混合层压板铝碳纤维粘合接头的接头强度。在层压板制造过程中,通过加入一块或几块铝板对碳纤维增强塑料(CFRP)复合材料进行改性,以增强复合材料的厚度性能。目的是确定与仅使用CFRP的参考接头相比,能够提供最佳接头强度改进的接头配置。一种为航空工业开发的粘合剂被用于制造用于拉伸测试的单搭接接头。对改性CFRP接头进行了实验和数值研究,以研究不同铺层方案的接头强度,以防止被粘物分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Manufacturing Review
Manufacturing Review ENGINEERING, MANUFACTURING-
CiteScore
5.40
自引率
12.00%
发文量
20
审稿时长
8 weeks
期刊介绍: The aim of the journal is to stimulate and record an international forum for disseminating knowledge on the advances, developments and applications of manufacturing engineering, technology and applied sciences with a focus on critical reviews of developments in manufacturing and emerging trends in this field. The journal intends to establish a specific focus on reviews of developments of key core topics and on the emerging technologies concerning manufacturing engineering, technology and applied sciences, the aim of which is to provide readers with rapid and easy access to definitive and authoritative knowledge and research-backed opinions on future developments. The scope includes, but is not limited to critical reviews and outstanding original research papers on the advances, developments and applications of: Materials for advanced manufacturing (Metals, Polymers, Glass, Ceramics, Composites, Nano-materials, etc.) and recycling, Material processing methods and technology (Machining, Forming/Shaping, Casting, Powder Metallurgy, Laser technology, Joining, etc.), Additive/rapid manufacturing methods and technology, Tooling and surface-engineering technology (fabrication, coating, heat treatment, etc.), Micro-manufacturing methods and technology, Nano-manufacturing methods and technology, Advanced metrology, instrumentation, quality assurance, testing and inspection, Mechatronics for manufacturing automation, Manufacturing machinery and manufacturing systems, Process chain integration and manufacturing platforms, Sustainable manufacturing and Life-cycle analysis, Industry case studies involving applications of the state-of-the-art manufacturing methods, technology and systems. Content will include invited reviews, original research articles, and invited special topic contributions.
期刊最新文献
A comprehensive review on the deformation behavior of refractory high entropy alloys at elevated temperatures A review on conventional and nonconventional machining of Nickel-based Nimonic superalloy Nanofluids, micro-lubrications and machining process optimisations − a review Topological structures for microchannel heat sink applications – a review Microstructure, physical, tensile and wear behaviour of B4C particles reinforced Al7010 alloy composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1