Beamforming with modified steering vectors for jet noise source location

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2023-08-26 DOI:10.1177/1475472x231199190
R. Dougherty
{"title":"Beamforming with modified steering vectors for jet noise source location","authors":"R. Dougherty","doi":"10.1177/1475472x231199190","DOIUrl":null,"url":null,"abstract":"Prof. Krish Ahuja has a longstanding interest in jet noise source location. His work in this area is grounded in the idea that if the assumed source location is correct, then the sound should obey the inverse square law relative to that point and the phase should be constant along lines originating at that point. He applied this with, conceptually, one microphone in 1985 and two microphones in 1998. In 2006 he commissioned a beamforming system, Array 48, from OptiNav, Inc. His student, Nick Breen, used this to measure subsonic jet noise source location in detail. The NASA-Glenn Research Center also purchased an Array 48. In the current work, a jet noise data set measured by Gary Podboy using Glenn’s array in 2008 is revisited with a new beamforming algorithm, Robust Functional Beamforming, to further support Tam’s two-source model and Breen’s source location. Beamforming with modified steering vectors is performed to measure the parameters of the wavepacket source model from the far field. This process suggested replacing the wavepacket spatial length parameter with a temporal lifetime parameter. Another steering vector modification aimed to measure modes with odd spinning order. It seems to have found them at an apparent location 10 jet diameters removed from the jet, laterally. This is tentatively interpreted as a Mach radius phenomenon like one observed by Csaba Horvath at NASA-Glenn, also using Array 48, to study counter-rotating propeller noise. In an observation unrelated to beamforming, the excess noise measured at 40° from the jet axis as compared with the 90° angle, is fully contained in the first few cross spectral matrix eigenvalues, or Spectral Proper Orthogonal Decomposition modes, in some cases.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472x231199190","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Prof. Krish Ahuja has a longstanding interest in jet noise source location. His work in this area is grounded in the idea that if the assumed source location is correct, then the sound should obey the inverse square law relative to that point and the phase should be constant along lines originating at that point. He applied this with, conceptually, one microphone in 1985 and two microphones in 1998. In 2006 he commissioned a beamforming system, Array 48, from OptiNav, Inc. His student, Nick Breen, used this to measure subsonic jet noise source location in detail. The NASA-Glenn Research Center also purchased an Array 48. In the current work, a jet noise data set measured by Gary Podboy using Glenn’s array in 2008 is revisited with a new beamforming algorithm, Robust Functional Beamforming, to further support Tam’s two-source model and Breen’s source location. Beamforming with modified steering vectors is performed to measure the parameters of the wavepacket source model from the far field. This process suggested replacing the wavepacket spatial length parameter with a temporal lifetime parameter. Another steering vector modification aimed to measure modes with odd spinning order. It seems to have found them at an apparent location 10 jet diameters removed from the jet, laterally. This is tentatively interpreted as a Mach radius phenomenon like one observed by Csaba Horvath at NASA-Glenn, also using Array 48, to study counter-rotating propeller noise. In an observation unrelated to beamforming, the excess noise measured at 40° from the jet axis as compared with the 90° angle, is fully contained in the first few cross spectral matrix eigenvalues, or Spectral Proper Orthogonal Decomposition modes, in some cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正导向矢量的波束形成射流噪声源定位
Krish Ahuja教授长期以来一直对喷气噪声源位置感兴趣。他在这一领域的工作是基于这样一种想法:如果假设的震源位置是正确的,那么声音应该遵循相对于该点的平方反比定律,并且相位应该沿着起源于该点的线保持恒定。1985年,他在概念上使用了一个麦克风,1998年使用了两个麦克风。2006年,他启用了OptiNav公司的波束形成系统Array 48。他的学生尼克·布林(Nick Breen)用它详细测量了亚音速射流噪声源的位置。美国宇航局格伦研究中心也购买了Array 48。在当前的工作中,Gary Podboy在2008年使用Glenn的阵列测量了一个射流噪声数据集,并使用一种新的波束形成算法,鲁棒功能波束形成,来进一步支持Tam的双源模型和Breen的源位置。采用修正导向矢量的波束形成方法从远场测量波包源模型的参数。该过程建议用时间寿命参数代替波包空间长度参数。另一种转向矢量修正旨在测量奇数旋转顺序的模式。似乎是在距离喷流直径10倍的地方发现的,侧向的。这被暂时解释为马赫半径现象,就像美国宇航局格伦中心的Csaba Horvath观察到的那样,他也使用48号阵列来研究反向旋转的螺旋桨噪音。在与波束形成无关的观测中,与90°角相比,在距离射流轴40°处测量的多余噪声完全包含在前几个交叉谱矩阵特征值中,或者在某些情况下,谱固有正交分解模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1