A. Francisco-López, B. Han, D. Lagarde, X. Marie, B. Urbaszek, C. Robert, A. Goñi
{"title":"On the impact of the stress situation on the optical properties of $WSe_2$ monolayers under high pressure","authors":"A. Francisco-López, B. Han, D. Lagarde, X. Marie, B. Urbaszek, C. Robert, A. Goñi","doi":"10.4279/PIP.110005","DOIUrl":null,"url":null,"abstract":"We have studied the optical properties of $WSe_2$ monolayers (ML) by means of photoluminescence (PL), PL excitation (PLE) and Raman scattering spectroscopy at room temperature and as a function of hydrostatic pressure up to ca. 12 GPa. For comparison the study comprises two cases: A single $WSe_2$ ML directly transferred onto one of the diamonds of the diamond anvil cell and a $WSe_2$ ML encapsulated into hexagonal boron nitride (hBN) layers. The pressure dependence of the A and B exciton, as determined by PL and PLE, respectively, is very different for the case of the bare $WSe_2$ ML and the $hBN/WSe_2-ML/hBN$ heterostructure. Whereas for the latter the A and B exciton energy increases linearly with increasing pressure at a rate of 3.5 to 3.8 meV/GPa, for the bare $WSe_2$ ML the A and B exciton energy decreases with a coefficient of -3.1 and -1.3 meV/GPa, respectively. We interpret that this behavior is due to a different stress situation. For a single ML the stress tensor is essentially uniaxial with the compressive stress component in the direction perpendicular to the plane of the ML. In contrast, for the substantially thicker $hBN/WSe_2-ML/hBN$ heterostructure the compression is hydrostatic. The results from an analysis of the pressure dependence of the frequency of Raman active modes comply with the interpretation of having a different stress situation in each case. \nReviewed by: A. San Miguel, Institut Lumière Matière, Université de Lyon, France; Edited by: J. S. Reparaz","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/PIP.110005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
We have studied the optical properties of $WSe_2$ monolayers (ML) by means of photoluminescence (PL), PL excitation (PLE) and Raman scattering spectroscopy at room temperature and as a function of hydrostatic pressure up to ca. 12 GPa. For comparison the study comprises two cases: A single $WSe_2$ ML directly transferred onto one of the diamonds of the diamond anvil cell and a $WSe_2$ ML encapsulated into hexagonal boron nitride (hBN) layers. The pressure dependence of the A and B exciton, as determined by PL and PLE, respectively, is very different for the case of the bare $WSe_2$ ML and the $hBN/WSe_2-ML/hBN$ heterostructure. Whereas for the latter the A and B exciton energy increases linearly with increasing pressure at a rate of 3.5 to 3.8 meV/GPa, for the bare $WSe_2$ ML the A and B exciton energy decreases with a coefficient of -3.1 and -1.3 meV/GPa, respectively. We interpret that this behavior is due to a different stress situation. For a single ML the stress tensor is essentially uniaxial with the compressive stress component in the direction perpendicular to the plane of the ML. In contrast, for the substantially thicker $hBN/WSe_2-ML/hBN$ heterostructure the compression is hydrostatic. The results from an analysis of the pressure dependence of the frequency of Raman active modes comply with the interpretation of having a different stress situation in each case.
Reviewed by: A. San Miguel, Institut Lumière Matière, Université de Lyon, France; Edited by: J. S. Reparaz
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.