On the impact of the stress situation on the optical properties of $WSe_2$ monolayers under high pressure

IF 1.2 Q3 PHYSICS, MULTIDISCIPLINARY Papers in Physics Pub Date : 2019-06-21 DOI:10.4279/PIP.110005
A. Francisco-López, B. Han, D. Lagarde, X. Marie, B. Urbaszek, C. Robert, A. Goñi
{"title":"On the impact of the stress situation on the optical properties of $WSe_2$ monolayers under high pressure","authors":"A. Francisco-López, B. Han, D. Lagarde, X. Marie, B. Urbaszek, C. Robert, A. Goñi","doi":"10.4279/PIP.110005","DOIUrl":null,"url":null,"abstract":"We have studied the optical properties of $WSe_2$ monolayers (ML) by means of photoluminescence (PL), PL excitation (PLE) and Raman scattering spectroscopy at room temperature and as a function of hydrostatic pressure up to ca. 12 GPa. For comparison the study comprises two cases: A single $WSe_2$ ML directly transferred onto one of the diamonds of the diamond anvil cell and a $WSe_2$ ML encapsulated into hexagonal boron nitride (hBN) layers. The pressure dependence of the A and B exciton, as determined by PL and PLE, respectively, is very different for the case of the bare $WSe_2$ ML and the $hBN/WSe_2-ML/hBN$ heterostructure. Whereas for the latter the A and B exciton energy increases linearly with increasing pressure at a rate of 3.5 to 3.8 meV/GPa, for the bare $WSe_2$ ML the A and B exciton energy decreases with a coefficient of -3.1 and -1.3 meV/GPa, respectively. We interpret that this behavior is due to a different stress situation. For a single ML the stress tensor is essentially uniaxial with the compressive stress component in the direction perpendicular to the plane of the ML. In contrast, for the substantially thicker $hBN/WSe_2-ML/hBN$ heterostructure the compression is hydrostatic. The results from an analysis of the pressure dependence of the frequency of Raman active modes comply with the interpretation of having a different stress situation in each case. \nReviewed by: A. San Miguel, Institut Lumière Matière, Université de Lyon, France; Edited by: J. S. Reparaz","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/PIP.110005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

We have studied the optical properties of $WSe_2$ monolayers (ML) by means of photoluminescence (PL), PL excitation (PLE) and Raman scattering spectroscopy at room temperature and as a function of hydrostatic pressure up to ca. 12 GPa. For comparison the study comprises two cases: A single $WSe_2$ ML directly transferred onto one of the diamonds of the diamond anvil cell and a $WSe_2$ ML encapsulated into hexagonal boron nitride (hBN) layers. The pressure dependence of the A and B exciton, as determined by PL and PLE, respectively, is very different for the case of the bare $WSe_2$ ML and the $hBN/WSe_2-ML/hBN$ heterostructure. Whereas for the latter the A and B exciton energy increases linearly with increasing pressure at a rate of 3.5 to 3.8 meV/GPa, for the bare $WSe_2$ ML the A and B exciton energy decreases with a coefficient of -3.1 and -1.3 meV/GPa, respectively. We interpret that this behavior is due to a different stress situation. For a single ML the stress tensor is essentially uniaxial with the compressive stress component in the direction perpendicular to the plane of the ML. In contrast, for the substantially thicker $hBN/WSe_2-ML/hBN$ heterostructure the compression is hydrostatic. The results from an analysis of the pressure dependence of the frequency of Raman active modes comply with the interpretation of having a different stress situation in each case. Reviewed by: A. San Miguel, Institut Lumière Matière, Université de Lyon, France; Edited by: J. S. Reparaz
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压下应力状态对$WSe_2$单层光学性能的影响
利用光致发光(PL)、PL激发(PLE)和拉曼散射光谱,研究了WSe_2单层膜(ML)在室温下的光学性质和高达12 GPa的静水压力的函数关系。为了进行比较,本研究分为两种情况:一种是将单个$WSe_2$ ML直接转移到金刚石砧细胞中的一个金刚石上,另一种是将$WSe_2$ ML包裹在六方氮化硼(hBN)层中。在裸WSe_2-ML和hBN/WSe_2-ML/hBN异质结构中,分别用PL和PLE测定的A和B激子的压力依赖性是非常不同的。而对于后者,A和B激子能量随压力的增加而线性增加,速率为3.5 ~ 3.8 meV/GPa,而对于裸WSe_2 - ML, A和B激子能量分别以-3.1和-1.3 meV/GPa的系数下降。我们解释说,这种行为是由于不同的压力情况。对于单个ML,应力张量基本上是单轴的,压应力分量垂直于ML平面的方向。相反,对于较厚的$hBN/WSe_2-ML/hBN$异质结构,压缩是流体静力的。对拉曼主动模频率的压力依赖性分析结果符合每种情况下具有不同应力情况的解释。评审:A. San Miguel,法国里昂大学Institut lumi mati研究所;编辑:J. S. Reparaz
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Papers in Physics
Papers in Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
13
期刊介绍: Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.
期刊最新文献
Detection and classification of rainfall in South America using satellite images and machine learning techniques Electric reduced transition probabilities of \(^{186}\text{W}\) and \(^{186}\text{Os}\) isobars through the interacting boson model-I Insights into vibrational and electronic properties of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) chemical bonding with (CuO)n clusters: a DFT study Study of hysteresis in the ferromagnetic random field 3-state clock model in two and three dimensional periodic lattices at zero temperature and in the presence of dilution and an absorbing state Changes in the surface irradiance during the total solar eclipse 2020 in Valcheta, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1