Comment on ‘Inference after covariate-adaptive randomisation: aspects of methodology and theory’

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2021-03-26 DOI:10.1080/24754269.2021.1905592
Wei Ma, Li-Xin Zhang, F. Hu
{"title":"Comment on ‘Inference after covariate-adaptive randomisation: aspects of methodology and theory’","authors":"Wei Ma, Li-Xin Zhang, F. Hu","doi":"10.1080/24754269.2021.1905592","DOIUrl":null,"url":null,"abstract":"In the past decade, significant progress has been made regarding inference under covariate-adaptive randomisation. We thank Prof. Shao for a timely review of the growing literature about the topic. The paper is focused on the most important and commonly used class of covariate-adaptive randomisation methods, i.e., those balancing discrete covariates. The recent advances in robust inference are emphasised anddiscussed in detail. Several types of outcomes, such as continuous and time-to-event data, are covered. We here provide some additional recent results from the following five perspectives.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"187 - 189"},"PeriodicalIF":0.7000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1905592","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1905592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In the past decade, significant progress has been made regarding inference under covariate-adaptive randomisation. We thank Prof. Shao for a timely review of the growing literature about the topic. The paper is focused on the most important and commonly used class of covariate-adaptive randomisation methods, i.e., those balancing discrete covariates. The recent advances in robust inference are emphasised anddiscussed in detail. Several types of outcomes, such as continuous and time-to-event data, are covered. We here provide some additional recent results from the following five perspectives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对“协变量自适应随机化后的推理:方法论和理论方面”的评论
在过去的十年中,在协变量自适应随机化下的推理方面取得了重大进展。我们感谢邵教授及时回顾了有关该主题的越来越多的文献。本文的重点是最重要和最常用的一类协变量自适应随机化方法,即那些平衡离散协变量的方法。重点讨论了鲁棒推理的最新进展。介绍了几种类型的结果,例如连续数据和时间到事件数据。在这里,我们从以下五个角度提供一些额外的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1