Jeferson Pereira Martins Silva , Mayra Luiza Marques da Silva , Adriano Ribeiro de Mendonça , Gilson Fernandes da Silva , Antônio Almeida de Barros Junior , Evandro Ferreira da Silva , Marcelo Otone Aguiar , Jeangelis Silva Santos , Nívea Maria Mafra Rodrigues
{"title":"Prognosis of forest production using machine learning techniques","authors":"Jeferson Pereira Martins Silva , Mayra Luiza Marques da Silva , Adriano Ribeiro de Mendonça , Gilson Fernandes da Silva , Antônio Almeida de Barros Junior , Evandro Ferreira da Silva , Marcelo Otone Aguiar , Jeangelis Silva Santos , Nívea Maria Mafra Rodrigues","doi":"10.1016/j.inpa.2021.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Forest production and growth are obtained from statistical models that allow the generation of information at the tree or forest stand level. Although the use of regression models is common in forest measurement, there is a constant search for estimation procedures that provide greater accuracy. Recently, machine learning techniques have been used with satisfactory performance in measuring forests. However, methods such as Adaptive Neuro-Fuzzy Inference System (ANFIS) and Random Forest are relatively poorly studied for predicting the volume of wood in eucalyptus plantations in Brazil. Therefore, it is essential to check whether these techniques can provide gains in terms of accuracy. Thus, this study aimed to evaluate the use of Random Forest and ANFIS techniques in the prognosis of forest production. The data used come from continuous forest inventories carried out in stands of eucalyptus clones. The data were divided into 70% for training and 30% for validation. The algorithms used to generate rules in ANFIS were Subtractive Clustering and Fuzzy-C-Means. Besides, training was done with the hybrid algorithm (descending gradient and least squares) with the number of seasons ranging from 1 to 20. Several RFs were trained, varying the number of trees from 50 to 850 and the number of observations by five leaves to 35. Artificial neural networks and decision trees were also trained to compare the feasibility of the techniques. The evaluation of the estimates generated by the techniques for training and validation was calculated based on the following statistics: correlation coefficient (r), relative Bias (RB), and the relative root mean square error (<em>RRMSE</em>) in percentage. In general, the techniques studied in this work showed excellent performance for the training and validation data set with <em>RRMSE</em> values <6%, RB < 0.5%, and r > 0.98. The RF presented inferior statistics about the ANFIS for the prognosis of forest production. The Subtractive Clustering (SC) and Fuzzy-C-Means (FCM) algorithms provide accurate baseline and volume projection estimates; both techniques are good alternatives for selecting variables used in modeling forest production.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 1","pages":"Pages 71-84"},"PeriodicalIF":7.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
Abstract
Forest production and growth are obtained from statistical models that allow the generation of information at the tree or forest stand level. Although the use of regression models is common in forest measurement, there is a constant search for estimation procedures that provide greater accuracy. Recently, machine learning techniques have been used with satisfactory performance in measuring forests. However, methods such as Adaptive Neuro-Fuzzy Inference System (ANFIS) and Random Forest are relatively poorly studied for predicting the volume of wood in eucalyptus plantations in Brazil. Therefore, it is essential to check whether these techniques can provide gains in terms of accuracy. Thus, this study aimed to evaluate the use of Random Forest and ANFIS techniques in the prognosis of forest production. The data used come from continuous forest inventories carried out in stands of eucalyptus clones. The data were divided into 70% for training and 30% for validation. The algorithms used to generate rules in ANFIS were Subtractive Clustering and Fuzzy-C-Means. Besides, training was done with the hybrid algorithm (descending gradient and least squares) with the number of seasons ranging from 1 to 20. Several RFs were trained, varying the number of trees from 50 to 850 and the number of observations by five leaves to 35. Artificial neural networks and decision trees were also trained to compare the feasibility of the techniques. The evaluation of the estimates generated by the techniques for training and validation was calculated based on the following statistics: correlation coefficient (r), relative Bias (RB), and the relative root mean square error (RRMSE) in percentage. In general, the techniques studied in this work showed excellent performance for the training and validation data set with RRMSE values <6%, RB < 0.5%, and r > 0.98. The RF presented inferior statistics about the ANFIS for the prognosis of forest production. The Subtractive Clustering (SC) and Fuzzy-C-Means (FCM) algorithms provide accurate baseline and volume projection estimates; both techniques are good alternatives for selecting variables used in modeling forest production.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining