Design and Control of an Aerial Manipulator with Invariant Center of Gravity for Physical Interaction

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL Journal of Mechanisms and Robotics-Transactions of the Asme Pub Date : 2023-09-07 DOI:10.1115/1.4063368
Yongfeng Rong, Wusheng Chou
{"title":"Design and Control of an Aerial Manipulator with Invariant Center of Gravity for Physical Interaction","authors":"Yongfeng Rong, Wusheng Chou","doi":"10.1115/1.4063368","DOIUrl":null,"url":null,"abstract":"\n The deployment of manipulators enhances the versatility and flexibility of unmanned aerial vehicles (UAVs) in aerial physical interaction tasks but also challenges their designs and controls due to variations in the center of gravity (CoG), moment of inertia and reaction wrenches. This work presents a novel design of a two-degree-of-freedom dual-tool manipulator with invariant-center-of-gravity (ICoG) property. The ICoG conditions are strictly deduced, and a practical optimization-based parameter tuning method is proposed. A novel adaptive-extended-state-observer-based (AESO-based) impedance control method is developed with actuator dynamics taken into account. The AESO can estimate and compensate for both the lumped disturbance, including the influences of moment-of-inertia variation and counter torque, and the unmeasurable states for the controller. In addition, a switching adaptive law is proposed to attenuate the peaking phenomenon under high observer gains. The impedance controller is designed using an auxiliary impedance tracking error to overcome the difficulty of the increased system order. The Lyapunov approach is used to evaluate the stability of the entire system. The proposed approach is implemented on a fully-actuated hexarotor with a prototype of the ICoG manipulator. Comparative experiments are conducted to validate the effectiveness and advantages of the proposed design and control methods.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4063368","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The deployment of manipulators enhances the versatility and flexibility of unmanned aerial vehicles (UAVs) in aerial physical interaction tasks but also challenges their designs and controls due to variations in the center of gravity (CoG), moment of inertia and reaction wrenches. This work presents a novel design of a two-degree-of-freedom dual-tool manipulator with invariant-center-of-gravity (ICoG) property. The ICoG conditions are strictly deduced, and a practical optimization-based parameter tuning method is proposed. A novel adaptive-extended-state-observer-based (AESO-based) impedance control method is developed with actuator dynamics taken into account. The AESO can estimate and compensate for both the lumped disturbance, including the influences of moment-of-inertia variation and counter torque, and the unmeasurable states for the controller. In addition, a switching adaptive law is proposed to attenuate the peaking phenomenon under high observer gains. The impedance controller is designed using an auxiliary impedance tracking error to overcome the difficulty of the increased system order. The Lyapunov approach is used to evaluate the stability of the entire system. The proposed approach is implemented on a fully-actuated hexarotor with a prototype of the ICoG manipulator. Comparative experiments are conducted to validate the effectiveness and advantages of the proposed design and control methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不变重心的物理交互航空机械臂的设计与控制
机械手的部署提高了无人机在空中物理交互任务中的通用性和灵活性,但由于重心、转动惯量和反作用力的变化,也给无人机的设计和控制带来了挑战。本文提出了一种具有不变重心(ICoG)特性的二自由度双刀机械臂的新设计。严格推导了ICoG条件,提出了一种实用的基于优化的参数整定方法。提出了一种考虑致动器动态特性的基于自适应扩展状态观测器的阻抗控制方法。AESO既可以估计和补偿集总扰动,包括惯量变化和反转矩的影响,也可以估计和补偿控制器的不可测量状态。此外,提出了一种开关自适应律来衰减高观测器增益下的峰值现象。采用辅助阻抗跟踪误差设计阻抗控制器,克服了系统阶数增加带来的困难。采用李雅普诺夫方法对整个系统的稳定性进行评价。该方法在全驱动六旋翼上实现,并以ICoG机械手为原型。通过对比实验验证了所提出的设计和控制方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
期刊最新文献
On the Construction of Confidence Regions for Uncertain Planar Displacements. Redundant Serial Manipulator Inverse Position Kinematics and Dynamics Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal Design and Analysis of a Novel Redundant Parallel Mechanism for Long Bone Fracture Reduction Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1