Application of proline to root medium is more effective for amelioration of photosynthetic damages as compared to foliar spraying or seed soaking in maize seedlings under short-term drought
Mehmet Demiralay, C. Altuntaş, A. Sezgin, R. Terzi, A. Kadıoğlu
{"title":"Application of proline to root medium is more effective for amelioration of photosynthetic damages as compared to foliar spraying or seed soaking in maize seedlings under short-term drought","authors":"Mehmet Demiralay, C. Altuntaş, A. Sezgin, R. Terzi, A. Kadıoğlu","doi":"10.3906/biy-1702-19","DOIUrl":null,"url":null,"abstract":"Exogenous proline (PRO) at low concentrations can enhance drought stress tolerance in different application modes such as application to rooting medium, foliar spray, and seed soaking. However, there is no information about which application mode is more effective for increasing the drought tolerance. Comparative effects of 1, 10, and 20 mM PRO applications through three application modes to hydroponically grown seedlings were examined under short-term drought stress in maize seedlings. Effects on leaf water potential, membrane damage, chlorophyll content, proline level, and gas exchange parameters such as net photosynthetic rate (Pn), transpiration rate (E), stomatal conductance (gs), and substomatal CO2 concentration (Ci) were compared. Results indicated that PRO pretreatments raised the water potential, chlorophyll content, Pn, E, gs, and Ci but lowered the malondialdehyde content in the three application modes as compared to the untreated plants. Of the three different modes of PRO pretreatment, rooting medium treatment at 1 mM concentration was also more effective in alleviating stress-induced damages in maize seedlings. Moreover, effectively applied PRO increased the maximum quantum efficiency of PS II, quantum yield of PS II photochemistry, photochemical quenching, and electron transport rate but decreased nonphotochemical quenching of chlorophyll fluorescence under short-term drought stress. In conclusion, exogenous PRO was markedly more effective in the root-treated mode than in foliar spray or seed soaking mode, suggesting that PRO had a different ameliorating effect in different application modes. Proline application in an effective mode can induce photochemical efficiency under short-term drought in maize.","PeriodicalId":23358,"journal":{"name":"Turkish Journal of Biology","volume":"41 1","pages":"649-660"},"PeriodicalIF":1.1000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3906/biy-1702-19","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3906/biy-1702-19","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Exogenous proline (PRO) at low concentrations can enhance drought stress tolerance in different application modes such as application to rooting medium, foliar spray, and seed soaking. However, there is no information about which application mode is more effective for increasing the drought tolerance. Comparative effects of 1, 10, and 20 mM PRO applications through three application modes to hydroponically grown seedlings were examined under short-term drought stress in maize seedlings. Effects on leaf water potential, membrane damage, chlorophyll content, proline level, and gas exchange parameters such as net photosynthetic rate (Pn), transpiration rate (E), stomatal conductance (gs), and substomatal CO2 concentration (Ci) were compared. Results indicated that PRO pretreatments raised the water potential, chlorophyll content, Pn, E, gs, and Ci but lowered the malondialdehyde content in the three application modes as compared to the untreated plants. Of the three different modes of PRO pretreatment, rooting medium treatment at 1 mM concentration was also more effective in alleviating stress-induced damages in maize seedlings. Moreover, effectively applied PRO increased the maximum quantum efficiency of PS II, quantum yield of PS II photochemistry, photochemical quenching, and electron transport rate but decreased nonphotochemical quenching of chlorophyll fluorescence under short-term drought stress. In conclusion, exogenous PRO was markedly more effective in the root-treated mode than in foliar spray or seed soaking mode, suggesting that PRO had a different ameliorating effect in different application modes. Proline application in an effective mode can induce photochemical efficiency under short-term drought in maize.
期刊介绍:
The Turkish Journal of Biology is published electronically 6 times a year by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts concerning all kinds of biological
processes including biochemistry and biosynthesis, physiology and metabolism, molecular genetics, molecular biology,
genomics, proteomics, molecular farming, biotechnology/genetic transformation, nanobiotechnology, bioinformatics
and systems biology, cell and developmental biology, stem cell biology, and reproductive biology. Contribution is open
to researchers of all nationalities.