{"title":"Savitar: an intelligent sign language translation approach for deafness and dysphonia in the COVID-19 era","authors":"Wuyan Liang, Xiaolong Xu","doi":"10.1108/dta-09-2022-0375","DOIUrl":null,"url":null,"abstract":"PurposeIn the COVID-19 era, sign language (SL) translation has gained attention in online learning, which evaluates the physical gestures of each student and bridges the communication gap between dysphonia and hearing people. The purpose of this paper is to devote the alignment between SL sequence and nature language sequence with high translation performance.Design/methodology/approachSL can be characterized as joint/bone location information in two-dimensional space over time, forming skeleton sequences. To encode joint, bone and their motion information, we propose a multistream hierarchy network (MHN) along with a vocab prediction network (VPN) and a joint network (JN) with the recurrent neural network transducer. The JN is used to concatenate the sequences encoded by the MHN and VPN and learn their sequence alignments.FindingsWe verify the effectiveness of the proposed approach and provide experimental results on three large-scale datasets, which show that translation accuracy is 94.96, 54.52, and 92.88 per cent, and the inference time is 18 and 1.7 times faster than listen-attend-spell network (LAS) and visual hierarchy to lexical sequence network (H2SNet) , respectively.Originality/valueIn this paper, we propose a novel framework that can fuse multimodal input (i.e. joint, bone and their motion stream) and align input streams with nature language. Moreover, the provided framework is improved by the different properties of MHN, VPN and JN. Experimental results on the three datasets demonstrate that our approaches outperform the state-of-the-art methods in terms of translation accuracy and speed.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-09-2022-0375","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeIn the COVID-19 era, sign language (SL) translation has gained attention in online learning, which evaluates the physical gestures of each student and bridges the communication gap between dysphonia and hearing people. The purpose of this paper is to devote the alignment between SL sequence and nature language sequence with high translation performance.Design/methodology/approachSL can be characterized as joint/bone location information in two-dimensional space over time, forming skeleton sequences. To encode joint, bone and their motion information, we propose a multistream hierarchy network (MHN) along with a vocab prediction network (VPN) and a joint network (JN) with the recurrent neural network transducer. The JN is used to concatenate the sequences encoded by the MHN and VPN and learn their sequence alignments.FindingsWe verify the effectiveness of the proposed approach and provide experimental results on three large-scale datasets, which show that translation accuracy is 94.96, 54.52, and 92.88 per cent, and the inference time is 18 and 1.7 times faster than listen-attend-spell network (LAS) and visual hierarchy to lexical sequence network (H2SNet) , respectively.Originality/valueIn this paper, we propose a novel framework that can fuse multimodal input (i.e. joint, bone and their motion stream) and align input streams with nature language. Moreover, the provided framework is improved by the different properties of MHN, VPN and JN. Experimental results on the three datasets demonstrate that our approaches outperform the state-of-the-art methods in terms of translation accuracy and speed.