Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-driven Multi-segment Continuum Mechanisms

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL Journal of Mechanisms and Robotics-Transactions of the Asme Pub Date : 2023-03-08 DOI:10.1115/1.4057075
Zhengyu Wang, Shiyang Bao, Bin Zi, Zirui Jia, Xiang Yu
{"title":"Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-driven Multi-segment Continuum Mechanisms","authors":"Zhengyu Wang, Shiyang Bao, Bin Zi, Zirui Jia, Xiang Yu","doi":"10.1115/1.4057075","DOIUrl":null,"url":null,"abstract":"This paper presents the design, analysis, and development of a novel four degrees of freedom (4-DOF) endoscopic robot with cable-driven multi-segment flexible continuum mechanisms. The endoscopic robot is mainly composed of the passive positioning arm, cable-pulley system and 3-DOF flexible continuum mechanism. The forward and inverse kinematics of the endoscopic robot are derived based on the constant curvature assumption, and its working space, flexibility and preoperative incision determination method are analyzed as well. Based on the hardware structure of the robot system, a control strategy and a control software are developed, and the continuum mechanism is kinematically calibrated to carry out the trajectory planning experiment and simulated surgery experiment. The experimental results show that the calibrated constant curvature model can be used for the motion control of the continuum mechanism, and the 4-DOF endoscopic robot can meet the visual field requirements of minimally invasive surgery.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4057075","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the design, analysis, and development of a novel four degrees of freedom (4-DOF) endoscopic robot with cable-driven multi-segment flexible continuum mechanisms. The endoscopic robot is mainly composed of the passive positioning arm, cable-pulley system and 3-DOF flexible continuum mechanism. The forward and inverse kinematics of the endoscopic robot are derived based on the constant curvature assumption, and its working space, flexibility and preoperative incision determination method are analyzed as well. Based on the hardware structure of the robot system, a control strategy and a control software are developed, and the continuum mechanism is kinematically calibrated to carry out the trajectory planning experiment and simulated surgery experiment. The experimental results show that the calibrated constant curvature model can be used for the motion control of the continuum mechanism, and the 4-DOF endoscopic robot can meet the visual field requirements of minimally invasive surgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新型四自由度柔性内窥镜机器人的研制
本文介绍了一种新型四自由度(4-DOF)内窥镜机器人的设计、分析和开发,该机器人具有缆索驱动的多节柔性连续体机构。内窥镜机器人主要由被动定位臂、索轮系统和三自由度柔性连续体机构组成。基于常曲率假设推导了内窥镜机器人的正运动学和逆运动学,分析了其工作空间、灵活性和术前切口确定方法。基于机器人系统的硬件结构,开发了控制策略和控制软件,并对连续体机构进行了运动学标定,进行了轨迹规划实验和模拟手术实验。实验结果表明,校准后的常曲率模型可用于连续体机构的运动控制,4自由度内窥镜机器人能够满足微创手术的视野要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
期刊最新文献
On the Construction of Confidence Regions for Uncertain Planar Displacements. Redundant Serial Manipulator Inverse Position Kinematics and Dynamics Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal Design and Analysis of a Novel Redundant Parallel Mechanism for Long Bone Fracture Reduction Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1