Modeling heart failure with preserved ejection fraction in rodents: Where do we stand?

Chun Chou, M. Chin
{"title":"Modeling heart failure with preserved ejection fraction in rodents: Where do we stand?","authors":"Chun Chou, M. Chin","doi":"10.3389/fddsv.2022.948407","DOIUrl":null,"url":null,"abstract":"Heart failure (HF) with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by signs and symptoms of HF in the presence of a normal left ventricular systolic function. Over the past decade, HFpEF has become increasingly prevalent, accounting for greater than 50% of all clinical HF presentations. HFpEF is a complex disease with heterogeneous clinical presentations and multiple non-cardiac comorbidities, which frequently co-exist and contribute to its pathophysiology. To date, only a handful of therapies have been proven to improve, albeit marginally, the outcomes in HFpEF. The development of effective therapeutic agents is in part hampered by the lack of animal models that adequately recapitulate human HFpEF. Although numerous pre-clinical models developed over the years have been labeled as “HFpEF” specific, there has not been a consensus on the appropriate standards for pre-clinical HFpEF models. Thus, the extent to which they truly mirror human HFpEF cannot be systematically validated. Recently, a new algorithm (H2FPEF) was developed to standardize the clinical diagnosis of HFpEF. In this review, with the aid of the clinical H2FPEF scoring system, we evaluate the clinical applicability and translational values of various murine models of HFpEF.","PeriodicalId":73080,"journal":{"name":"Frontiers in drug discovery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fddsv.2022.948407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by signs and symptoms of HF in the presence of a normal left ventricular systolic function. Over the past decade, HFpEF has become increasingly prevalent, accounting for greater than 50% of all clinical HF presentations. HFpEF is a complex disease with heterogeneous clinical presentations and multiple non-cardiac comorbidities, which frequently co-exist and contribute to its pathophysiology. To date, only a handful of therapies have been proven to improve, albeit marginally, the outcomes in HFpEF. The development of effective therapeutic agents is in part hampered by the lack of animal models that adequately recapitulate human HFpEF. Although numerous pre-clinical models developed over the years have been labeled as “HFpEF” specific, there has not been a consensus on the appropriate standards for pre-clinical HFpEF models. Thus, the extent to which they truly mirror human HFpEF cannot be systematically validated. Recently, a new algorithm (H2FPEF) was developed to standardize the clinical diagnosis of HFpEF. In this review, with the aid of the clinical H2FPEF scoring system, we evaluate the clinical applicability and translational values of various murine models of HFpEF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用保留的射血分数模拟啮齿动物的心力衰竭:我们站在哪里?
射血分数保留的心力衰竭(HF)是一种临床综合征,其特征是在左心室收缩功能正常的情况下出现HF的体征和症状。在过去的十年里,HFpEF越来越普遍,占所有临床HF表现的50%以上。HFpEF是一种复杂的疾病,具有异质性临床表现和多种非心脏合并症,这些疾病经常共存并对其病理生理学有贡献。迄今为止,只有少数疗法被证明能改善HFpEF的疗效,尽管效果甚微。有效治疗剂的开发在一定程度上受到缺乏充分概括人类HFpEF的动物模型的阻碍。尽管多年来开发的许多临床前模型都被标记为“HFpEF”特异性,但对于临床前HFpEF模型的适当标准尚未达成共识。因此,它们真正反映人类HFpEF的程度无法系统验证。最近,开发了一种新的算法(H2FPEF)来规范HFpEF的临床诊断。在这篇综述中,借助临床H2FPEF评分系统,我们评估了各种HFpEF小鼠模型的临床适用性和转化价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mimicking the immunosuppressive impact of fibroblasts in a 3D multicellular spheroid model Alternative therapeutics to control antimicrobial resistance: a general perspective Editorial: The boulder peptide symposium 2021 scientific update Applying artificial intelligence to accelerate and de-risk antibody discovery Editorial: Women in anti-inflammatory and immunomodulating agents: 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1