Significance of hydraulic complexity parameters M1 and M2 based on the laboratory and field data

IF 2.7 4区 环境科学与生态学 Q2 Environmental Science Hydrology Research Pub Date : 2023-02-27 DOI:10.2166/nh.2023.089
F. Bahmanpouri, D. Termini, S. Barbetta, M. Dionigi, T. Moramarco
{"title":"Significance of hydraulic complexity parameters M1 and M2 based on the laboratory and field data","authors":"F. Bahmanpouri, D. Termini, S. Barbetta, M. Dionigi, T. Moramarco","doi":"10.2166/nh.2023.089","DOIUrl":null,"url":null,"abstract":"\n Hydraulic complexity metrics referred to as M1 and M2 play an important role when it comes to the analysis of habitat metrics. In the present paper, the significance of these parameters is analysed by using laboratory data as well as field observations along the Tiber River in Italy. Based on the laboratory data, the estimated parameters allow us to characterize the high/low-velocity areas. Based on field observations, larger magnitudes of M1 are linked to the zones with large changes in cross-sectional flow velocity. Larger magnitudes of M2 are observed at the left bank of the channel for all flow conditions, suggesting locations with larger kinetic energy consumption for aquatic organisms. Overall, the findings of the present research would be of particular interest in quantifying biologically important flow patterns occurring at different spatial scales within different streams and flow conditions.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.089","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

Hydraulic complexity metrics referred to as M1 and M2 play an important role when it comes to the analysis of habitat metrics. In the present paper, the significance of these parameters is analysed by using laboratory data as well as field observations along the Tiber River in Italy. Based on the laboratory data, the estimated parameters allow us to characterize the high/low-velocity areas. Based on field observations, larger magnitudes of M1 are linked to the zones with large changes in cross-sectional flow velocity. Larger magnitudes of M2 are observed at the left bank of the channel for all flow conditions, suggesting locations with larger kinetic energy consumption for aquatic organisms. Overall, the findings of the present research would be of particular interest in quantifying biologically important flow patterns occurring at different spatial scales within different streams and flow conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实验室和现场数据的水力复杂性参数M1和M2的意义
水力复杂性指标M1和M2在分析生境指标时起着重要作用。本文利用实验室资料和意大利台伯河沿岸的野外观测资料,分析了这些参数的意义。根据实验室数据,估计的参数使我们能够表征高/低速度区域。根据野外观测,较大的M1值与断面流速变化较大的区域有关。在所有水流条件下,在河道左岸都观察到较大的M2值,这表明水生生物的动能消耗较大。总的来说,本研究的结果将对在不同空间尺度、不同溪流和流动条件下发生的重要的生物流动模式进行量化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrology Research
Hydrology Research Environmental Science-Water Science and Technology
CiteScore
5.30
自引率
7.40%
发文量
70
审稿时长
17 weeks
期刊介绍: Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.
期刊最新文献
Prediction of flash flood peak discharge in hilly areas with ungauged basins based on machine learning Effects of tributary inflows on unsteady flow hysteresis and hydrodynamics in the mainstream Drought mitigation operation of water conservancy projects under severe droughts Water quality level estimation using IoT sensors and probabilistic machine learning model Design storm parameterisation for urban drainage studies derived from regional rainfall datasets: A case study in the Spanish Mediterranean region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1