Transformation, reaction and organization of functional nanostructures using solution-based microreactor-assisted nanomaterial deposition for solar photovoltaics

IF 3.3 Q3 ENERGY & FUELS MRS Energy & Sustainability Pub Date : 2022-07-07 DOI:10.1557/s43581-022-00035-x
V. K. Doddapaneni, J. A. Dhas, A. Chang, Chang‐Ho Choi, Seung-Yeol Han, B. Paul, Chih-hung Chang
{"title":"Transformation, reaction and organization of functional nanostructures using solution-based microreactor-assisted nanomaterial deposition for solar photovoltaics","authors":"V. K. Doddapaneni, J. A. Dhas, A. Chang, Chang‐Ho Choi, Seung-Yeol Han, B. Paul, Chih-hung Chang","doi":"10.1557/s43581-022-00035-x","DOIUrl":null,"url":null,"abstract":"Microreactor-Assisted Nanomaterial Deposition (MAND) process offers unique capabilities in achieving large size and shape control levels while providing a more rapid path for scaling via process intensification for nanomaterial production. This review highlights the application of continuous flow microreactors to synthesize, assemble, transform, and deposit nanostructured materials for Solar Photovoltaics, the capabilities of MAND in the field, and the potential outlook of MAND . Microreactor-Assisted Nanomaterial Deposition (MAND) is a promising technology that synthesizes reactive fluxes and nanomaterials to deposit nanostructured materials at the point of use. MAND offers precise control over reaction, organization, and transformation processes to manufacture nanostructured materials with distinct morphologies, structures, and properties. In synthesis, microreactor technology offers large surface-area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations, leading to more uniform heating and mixing in the deposition process. The possibility of synthesizing nanomaterials in the required volumes at the point of application eliminates the need to store and transport potentially hazardous materials. Further, MAND provides new opportunities for tailoring novel nanostructures and nano-shaped features, opening the opportunity to assemble unique nanostructures and nanostructured thin films. MAND processes control the heat transfer, mass transfer, and reaction kinetics using well-defined microstructures of the active unit reactor cell that can be replicated at larger scales to produce higher chemical production volumes. This critical feature opens a promising avenue in developing scalable nanomanufacturing. This paper reviews advances in microreactor-assisted nanomaterial deposition of nanostructured materials for solar photovoltaics. The discussions review the use of microreactors to tailor the reacting flux, transporting to substrate surfaces via controlling process parameters such as flow rates, pH of the precursor solutions, and seed layers on the formation and/or transformation of intermediary reactive molecules, nanoclusters, nanoparticles, and structured assemblies. In the end, the review discusses the use of an industrial scale MAND to apply anti-reflective and anti-soiling coatings on the solar modules in the field and details future outlooks of MAND reactors. Graphical abstract","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":"9 1","pages":"407-442"},"PeriodicalIF":3.3000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43581-022-00035-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Microreactor-Assisted Nanomaterial Deposition (MAND) process offers unique capabilities in achieving large size and shape control levels while providing a more rapid path for scaling via process intensification for nanomaterial production. This review highlights the application of continuous flow microreactors to synthesize, assemble, transform, and deposit nanostructured materials for Solar Photovoltaics, the capabilities of MAND in the field, and the potential outlook of MAND . Microreactor-Assisted Nanomaterial Deposition (MAND) is a promising technology that synthesizes reactive fluxes and nanomaterials to deposit nanostructured materials at the point of use. MAND offers precise control over reaction, organization, and transformation processes to manufacture nanostructured materials with distinct morphologies, structures, and properties. In synthesis, microreactor technology offers large surface-area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations, leading to more uniform heating and mixing in the deposition process. The possibility of synthesizing nanomaterials in the required volumes at the point of application eliminates the need to store and transport potentially hazardous materials. Further, MAND provides new opportunities for tailoring novel nanostructures and nano-shaped features, opening the opportunity to assemble unique nanostructures and nanostructured thin films. MAND processes control the heat transfer, mass transfer, and reaction kinetics using well-defined microstructures of the active unit reactor cell that can be replicated at larger scales to produce higher chemical production volumes. This critical feature opens a promising avenue in developing scalable nanomanufacturing. This paper reviews advances in microreactor-assisted nanomaterial deposition of nanostructured materials for solar photovoltaics. The discussions review the use of microreactors to tailor the reacting flux, transporting to substrate surfaces via controlling process parameters such as flow rates, pH of the precursor solutions, and seed layers on the formation and/or transformation of intermediary reactive molecules, nanoclusters, nanoparticles, and structured assemblies. In the end, the review discusses the use of an industrial scale MAND to apply anti-reflective and anti-soiling coatings on the solar modules in the field and details future outlooks of MAND reactors. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微反应器辅助沉积的溶液基太阳能光伏电池纳米材料的转化、反应和组织
微反应器辅助纳米材料沉积(MAND)工艺在实现大尺寸和形状控制水平方面提供了独特的能力,同时通过工艺强化为纳米材料生产提供了更快速的缩放路径。这篇综述重点介绍了连续流微反应器在合成、组装、转化和沉积太阳能光伏纳米结构材料方面的应用,MAND在该领域的能力,以及MAND的潜在前景。微反应器辅助纳米材料沉积(MAND)是一种很有前途的技术,它可以在使用点合成反应熔剂和纳米材料来沉积纳米结构材料。MAND提供对反应、组织和转化过程的精确控制,以制造具有不同形态、结构和性能的纳米结构材料。在合成中,微反应器技术在微通道结构内提供了大的表面积与体积比,以加速热量和质量的传输。这种加速的传输允许反应温度和浓度的快速变化,从而在沉积过程中实现更均匀的加热和混合。在应用时合成所需体积的纳米材料的可能性消除了储存和运输潜在危险材料的需要。此外,MAND为定制新型纳米结构和纳米形状特征提供了新的机会,为组装独特的纳米结构和纳米粒子结构薄膜提供了机会。MAND工艺使用活性单元反应器电池的明确微观结构来控制传热、传质和反应动力学,这些微观结构可以在更大的规模上复制,以产生更高的化学生产量。这一关键特性为开发可扩展的纳米制造开辟了一条有前景的途径。本文综述了微反应器辅助纳米材料沉积太阳能光伏纳米结构材料的研究进展。讨论回顾了使用微反应器来定制反应通量,通过控制工艺参数(如流速、前体溶液的pH值)将其输送到基底表面,以及中间反应分子、纳米团簇、纳米颗粒和结构化组件的形成和/或转化的种子层。最后,该综述讨论了在现场使用工业规模的MAND在太阳能模块上涂覆抗反射和防污涂层,并详细介绍了MAND反应堆的未来前景。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
期刊最新文献
Carbon footprint inventory using life cycle energy analysis Advanced hybrid combustion systems as a part of efforts to achieve carbon neutrality of the vehicles Assessment of the penetration impact of renewable-rich electrical grids: The Jordanian grid as a case study Celebrating 50 years of the Materials Research Society Energy storage techniques, applications, and recent trends: A sustainable solution for power storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1