M. S. Arif, Zeeshan Sarwer, S. Ayob, Mohd Zaid, Shahbaz Ahmad
{"title":"Modified asymmetrical 13-level inverter topology with reduce power semiconductor devices","authors":"M. S. Arif, Zeeshan Sarwer, S. Ayob, Mohd Zaid, Shahbaz Ahmad","doi":"10.11591/ijpeds.v11.i4.pp2212-2222","DOIUrl":null,"url":null,"abstract":"This paper introduces a modified multilevel inverter topology with asymmetrical dc sources combination. The significant features of the proposed circuit are the reduced number of switches and low total standing voltage (TSV). Proposed topology utilizes ten switches to produce 13 level output with per unit TSVp.u of 5.33. An additional feature of the proposed topology is the inherent negative level generation as there is no requirement of an H-bridge for the polarity reversals. Nearest level control (NLC) technique is used as the modulation strategy. Performance of the proposed topology is validated through extensive analysis using Simulink and PLECS software. Detailed circuit analysis and its power loss, as well as efficiency studies, have been carried out under constant and dynamic load conditions. Results obtained shows that the proposed topology is working well, producing an output of 13-level with total harmonic distortion of 6.36% and inverter efficiency of 98.8%. The topology is extended to n-level structure, and its generalized expressions for different parameters were formulated. The comparison of the generalized structure with other existing topology is carried out, and it is found that the proposed topology outperform other topologies on many parameters.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"11 1","pages":"2212-2222"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijpeds.v11.i4.pp2212-2222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2
Abstract
This paper introduces a modified multilevel inverter topology with asymmetrical dc sources combination. The significant features of the proposed circuit are the reduced number of switches and low total standing voltage (TSV). Proposed topology utilizes ten switches to produce 13 level output with per unit TSVp.u of 5.33. An additional feature of the proposed topology is the inherent negative level generation as there is no requirement of an H-bridge for the polarity reversals. Nearest level control (NLC) technique is used as the modulation strategy. Performance of the proposed topology is validated through extensive analysis using Simulink and PLECS software. Detailed circuit analysis and its power loss, as well as efficiency studies, have been carried out under constant and dynamic load conditions. Results obtained shows that the proposed topology is working well, producing an output of 13-level with total harmonic distortion of 6.36% and inverter efficiency of 98.8%. The topology is extended to n-level structure, and its generalized expressions for different parameters were formulated. The comparison of the generalized structure with other existing topology is carried out, and it is found that the proposed topology outperform other topologies on many parameters.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.