Role of nozzle-exit boundary layer in producing jet noise

IF 1.2 4区 工程技术 Q3 ACOUSTICS International Journal of Aeroacoustics Pub Date : 2022-06-15 DOI:10.1177/1475472X221107375
Aharon Z. Karon, K. Ahuja
{"title":"Role of nozzle-exit boundary layer in producing jet noise","authors":"Aharon Z. Karon, K. Ahuja","doi":"10.1177/1475472X221107375","DOIUrl":null,"url":null,"abstract":"Often the measurements from different jet noise studies, which are thought to have been acquired at or corrected to identical jet conditions, do not match when compared to each other. This study looks at the nozzle-exit boundary layer as a possible factor for these differences. The nozzle-exit boundary layer state can easily be changed depending on the design of the jet-facility or the nozzle. To this end, jet noise measurements and nozzle-exit velocity profile measurements were acquired for nozzles where the nozzle-exit boundary state was changed either by using different types of nozzles, ASME nozzles versus conical nozzles, or extensions were added to the nozzles straight section. It is shown that as the laminar boundary layer transitions to turbulent, the high-frequency jet noise is reduced. In addition, development of a novel empirical correction for these effects was attempted.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221107375","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 4

Abstract

Often the measurements from different jet noise studies, which are thought to have been acquired at or corrected to identical jet conditions, do not match when compared to each other. This study looks at the nozzle-exit boundary layer as a possible factor for these differences. The nozzle-exit boundary layer state can easily be changed depending on the design of the jet-facility or the nozzle. To this end, jet noise measurements and nozzle-exit velocity profile measurements were acquired for nozzles where the nozzle-exit boundary state was changed either by using different types of nozzles, ASME nozzles versus conical nozzles, or extensions were added to the nozzles straight section. It is shown that as the laminar boundary layer transitions to turbulent, the high-frequency jet noise is reduced. In addition, development of a novel empirical correction for these effects was attempted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喷嘴-出口边界层在产生射流噪声中的作用
通常,来自不同射流噪声研究的测量结果,被认为是在相同的射流条件下获得或校正的,在相互比较时并不匹配。本研究将喷嘴-出口边界层视为造成这些差异的可能因素。喷嘴-出口边界层状态很容易因射流装置或喷嘴的设计而改变。为此,通过使用不同类型的喷嘴(ASME喷嘴与锥形喷嘴)或在喷嘴直截面上增加扩展部分来改变喷嘴-出口边界状态的喷嘴,获得了射流噪声测量和喷嘴-出口速度剖面测量结果。结果表明,当层流边界层向湍流过渡时,高频射流噪声降低。此外,还试图为这些影响开发一种新的经验校正方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Aeroacoustics
International Journal of Aeroacoustics ACOUSTICS-ENGINEERING, AEROSPACE
CiteScore
2.10
自引率
10.00%
发文量
38
审稿时长
>12 weeks
期刊介绍: International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published. Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.
期刊最新文献
Precise acoustic drone localization and tracking via drone noise: Steered response power - phase transform around harmonics Aerodynamic and aeroacoustic characteristics of rocket sled under strong ground effect Prediction of the aerodynamic noise of an airfoil via the hybrid methods of aeroacoustics Aeroacoustic source localization using the microphone array method with application to wind turbine noise Christopher Tam: Brief history and accomplishments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1