Robust Multi-Legged Walking Robots for Interactions with Different Terrains

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL Journal of Mechanisms and Robotics-Transactions of the Asme Pub Date : 2023-04-11 DOI:10.1115/1.4062303
N. Robson, Vanessa Audrey, Ashutosh Dwivedi, Dylan Kunzmann
{"title":"Robust Multi-Legged Walking Robots for Interactions with Different Terrains","authors":"N. Robson, Vanessa Audrey, Ashutosh Dwivedi, Dylan Kunzmann","doi":"10.1115/1.4062303","DOIUrl":null,"url":null,"abstract":"\n This paper explores the kinematic synthesis, design and pilot experimental testing of a six-legged walking robotic platform able to traverse through different terrains. We aim to develop a structured approach to designing the limb morphology using a relaxed kinematic task with incorporated conditions on foot-environments contact force direction (related to stability) and curvature constraints (related to maintaining contact). The design approach builds up incrementally starting with studying the basic human leg walking trajectory and then defining a “relaxed” kinematic task. The “relaxed” kinematic task consists only of two contact locations (toe-off and heel-strike) with higher order motion task specifications compatible with foot-terrain(s) contact and curvature constraints in the vicinity of the two contacts. As the next step, an eight-bar leg image is created based on the “relaxed” kinematic task and incorporated within a six-legged walking robot. Pilot experimental tests explore if the proposed approach results in an adaptable behavior which allows the platform to incorporate different walking foot trajectories and gait styles coupled to each environment. The results suggest that the proposed “relaxed” higher order motion task combined with the leg morphological properties and feet material allowed the platform to walk stably on the different terrains. The main advantage of the proposed method is that the platform has carefully designed limb morphology with incorporated conditions on foot-environment interaction and incorporates a single actuator to drive all six legs.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062303","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the kinematic synthesis, design and pilot experimental testing of a six-legged walking robotic platform able to traverse through different terrains. We aim to develop a structured approach to designing the limb morphology using a relaxed kinematic task with incorporated conditions on foot-environments contact force direction (related to stability) and curvature constraints (related to maintaining contact). The design approach builds up incrementally starting with studying the basic human leg walking trajectory and then defining a “relaxed” kinematic task. The “relaxed” kinematic task consists only of two contact locations (toe-off and heel-strike) with higher order motion task specifications compatible with foot-terrain(s) contact and curvature constraints in the vicinity of the two contacts. As the next step, an eight-bar leg image is created based on the “relaxed” kinematic task and incorporated within a six-legged walking robot. Pilot experimental tests explore if the proposed approach results in an adaptable behavior which allows the platform to incorporate different walking foot trajectories and gait styles coupled to each environment. The results suggest that the proposed “relaxed” higher order motion task combined with the leg morphological properties and feet material allowed the platform to walk stably on the different terrains. The main advantage of the proposed method is that the platform has carefully designed limb morphology with incorporated conditions on foot-environment interaction and incorporates a single actuator to drive all six legs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒多足步行机器人与不同地形的相互作用
本文探讨了一种能够穿越不同地形的六足步行机器人平台的运动学综合、设计和中试测试。我们的目标是开发一种结构化的方法来设计肢体形态,使用放松的运动学任务,结合足部环境接触力方向(与稳定性有关)和曲率约束(与保持接触有关)的条件。设计方法是从研究人类基本的腿部行走轨迹开始,然后定义一个“放松”的运动学任务。“放松”运动学任务仅包括两个接触位置(脚趾离开和脚跟撞击),具有与两个接触附近的足部地形接触和曲率约束兼容的高阶运动任务规范。下一步,基于“放松”的运动学任务创建一个八杆腿图像,并将其纳入六腿步行机器人中。初步实验测试探讨了所提出的方法是否会产生适应性行为,从而使平台能够结合不同的步行轨迹和步态风格,并与每个环境相结合。结果表明,所提出的“放松”高阶运动任务结合腿部形态特性和脚部材料,使平台能够在不同地形上稳定行走。所提出的方法的主要优点是,该平台精心设计了肢体形态,结合了足部环境相互作用的条件,并结合了一个单独的致动器来驱动所有六条腿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
期刊最新文献
On the Construction of Confidence Regions for Uncertain Planar Displacements. On the Computation of Mean and Variance of Spatial Displacements. Separable Tendon-Driven Robotic Manipulator with a Long, Flexible, Passive Proximal Section. Redundant Serial Manipulator Inverse Position Kinematics and Dynamics Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1