Hybrid predictive based control of precipitation in a water-scarce region: A focus on the application of intelligent learning for green irrigation in agriculture sector
A.Y. Zimit , Mahmud M. Jibril , M.S. Azimi , S.I. Abba
{"title":"Hybrid predictive based control of precipitation in a water-scarce region: A focus on the application of intelligent learning for green irrigation in agriculture sector","authors":"A.Y. Zimit , Mahmud M. Jibril , M.S. Azimi , S.I. Abba","doi":"10.1016/j.jssas.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>A growing need for irrigation in agriculture results from recent climatic parameter uncertainties brought on by climate change, global warming, and other factors. The present-day tumultuous, unpredictable, ever-changing, and ambiguous nature of the onset, cessation, and duration of adverse weather conditions poses a formidable obstacle for farmers in formulating informed judgments pertaining to agricultural practices. In this study, the metrological simulation was carried out based on different input variables, including wind speed, wind direction, relative humidity, and minimum and maximum temperature, to predict the rainfall in the arid agricultural area of Kano, Nigeria. For this purpose, an adaptive neuro-fuzzy inference system (ANFIS), feed-forward neural network (FFNN), and multi-linear regression (MLR) were utilized. Five evaluation criteria for predictive control, including determination coefficient (R<sup>2</sup>), Nash–Sutcliffe efficiency (NSE), mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE), were used to figure out how accurate the models were based on how the features were chosen. The output proved the reliable accuracy of intelligent regression learning. The results depicted that MLR-M1 with R<sup>2</sup> = 0.9989, NSE = 0.9872, and RMSE = 0.0016 performs the best at predicting rainfall, even though all three computational models (ANFIS, FFNN, and MLR) produced good results. The predictive models justified reliable tools for the management of water resources, especially in the agricultural sector.</p></div>","PeriodicalId":17560,"journal":{"name":"Journal of the Saudi Society of Agricultural Sciences","volume":"22 8","pages":"Pages 524-534"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1658077X2300067X/pdfft?md5=512ae28cef1b97ab2514e7f6aed666c8&pid=1-s2.0-S1658077X2300067X-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Saudi Society of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1658077X2300067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
A growing need for irrigation in agriculture results from recent climatic parameter uncertainties brought on by climate change, global warming, and other factors. The present-day tumultuous, unpredictable, ever-changing, and ambiguous nature of the onset, cessation, and duration of adverse weather conditions poses a formidable obstacle for farmers in formulating informed judgments pertaining to agricultural practices. In this study, the metrological simulation was carried out based on different input variables, including wind speed, wind direction, relative humidity, and minimum and maximum temperature, to predict the rainfall in the arid agricultural area of Kano, Nigeria. For this purpose, an adaptive neuro-fuzzy inference system (ANFIS), feed-forward neural network (FFNN), and multi-linear regression (MLR) were utilized. Five evaluation criteria for predictive control, including determination coefficient (R2), Nash–Sutcliffe efficiency (NSE), mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE), were used to figure out how accurate the models were based on how the features were chosen. The output proved the reliable accuracy of intelligent regression learning. The results depicted that MLR-M1 with R2 = 0.9989, NSE = 0.9872, and RMSE = 0.0016 performs the best at predicting rainfall, even though all three computational models (ANFIS, FFNN, and MLR) produced good results. The predictive models justified reliable tools for the management of water resources, especially in the agricultural sector.
期刊介绍:
Journal of the Saudi Society of Agricultural Sciences is an English language, peer-review scholarly publication which publishes research articles and critical reviews from every area of Agricultural sciences and plant science. Scope of the journal includes, Agricultural Engineering, Plant production, Plant protection, Animal science, Agricultural extension, Agricultural economics, Food science and technology, Soil and water sciences, Irrigation science and technology and environmental science (soil formation, biological classification, mapping and management of soil). Journal of the Saudi Society of Agricultural Sciences publishes 4 issues per year and is the official publication of the King Saud University and Saudi Society of Agricultural Sciences and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.