Exploring Magnetorheological Brake-Based Anti-Lock Brake System for Automotive Application

Romit Kamble, S. Patil
{"title":"Exploring Magnetorheological Brake-Based Anti-Lock Brake System for Automotive Application","authors":"Romit Kamble, S. Patil","doi":"10.4018/ijmmme.2019100102","DOIUrl":null,"url":null,"abstract":"The present work explores a magnetorheological brake (MRB)-based anti-lock brake system (ABS) proposed for a vehicular application. Because of its quick response time, MRB is being considered as a substitute for the conventional hydraulic brake (CHB), commonly used for road vehicles. ABS is used along with CHB to prevent wheel lockup due to severe braking and thereby maintain the stability of the vehicle. This work envisages ABS for a vehicle using MRB instead of CHB. The braking maneuver for a typical mid-size car with and without ABS is simulated in a MATLAB environment. Both versions, a CHB-based ABS and a MRB-based ABS are considered in simulations. The braking performance in terms of stopping time and stopping distance is estimated. A PID and a Fuzzy controller are proposed for improving the control performance of the brake system. The comparative analysis based on the simulations helps make estimations for MRB-based ABS performance.","PeriodicalId":43174,"journal":{"name":"International Journal of Manufacturing Materials and Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/ijmmme.2019100102","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Manufacturing Materials and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmmme.2019100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

Abstract

The present work explores a magnetorheological brake (MRB)-based anti-lock brake system (ABS) proposed for a vehicular application. Because of its quick response time, MRB is being considered as a substitute for the conventional hydraulic brake (CHB), commonly used for road vehicles. ABS is used along with CHB to prevent wheel lockup due to severe braking and thereby maintain the stability of the vehicle. This work envisages ABS for a vehicle using MRB instead of CHB. The braking maneuver for a typical mid-size car with and without ABS is simulated in a MATLAB environment. Both versions, a CHB-based ABS and a MRB-based ABS are considered in simulations. The braking performance in terms of stopping time and stopping distance is estimated. A PID and a Fuzzy controller are proposed for improving the control performance of the brake system. The comparative analysis based on the simulations helps make estimations for MRB-based ABS performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁流变制动的汽车防抱死制动系统研究
本工作探讨了一种基于磁流变制动器(MRB)的防抱死制动系统(ABS),该系统适用于车辆应用。由于其快速响应时间,MRB被认为是常用于道路车辆的传统液压制动器(CHB)的替代品。ABS与CHB一起使用,以防止由于剧烈制动而导致的车轮抱死,从而保持车辆的稳定性。这项工作设想ABS用于使用MRB而不是CHB的车辆。在MATLAB环境中模拟了一辆典型的中型汽车在有ABS和无ABS的情况下的制动动作。模拟中考虑了两种版本,即基于CHB的ABS和基于MRB的ABS。根据停车时间和停车距离估算制动性能。为了提高制动系统的控制性能,提出了PID和模糊控制器。基于仿真的比较分析有助于估计基于MRB的ABS性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
21
期刊最新文献
Ultrasonic Bonding of Ag Ribbon on Si Wafers With Various Backside Metallization Window analysis and MPI for efficiency and productivity assessment under fuzzy data Low-Temperature Direct Bonding of 3D-IC Packages and Power IC Modules Using Ag Nanotwinned Thin Films Influence of cutting parameters on machinability of DSS 2205 and SDSS 2507 materials during milling Island-matrix inhomogeneous deformation behavior, formation of deformation band and BUT forming of DP steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1