Optimal design and low noise realization of digital differentiator

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electrical Engineering-elektrotechnicky Casopis Pub Date : 2022-09-01 DOI:10.2478/jee-2022-0044
Om Prakash Goswami, Aasheesh Shukla, Manish Kumar
{"title":"Optimal design and low noise realization of digital differentiator","authors":"Om Prakash Goswami, Aasheesh Shukla, Manish Kumar","doi":"10.2478/jee-2022-0044","DOIUrl":null,"url":null,"abstract":"Abstract This manuscript presents a design of a differentiator in the digital domain with its low noise realization. It manifests the minimization of the L1 -error objective function by using a hybrid optimization technique consisting of the particle swarm and simulated annealing optimization algorithm. The obtained magnitude response provides a noteworthy approximation of the ideal differentiator with a minimal magnitude inaccuracy when compared with the existing designs. The realization structures are also investigated and compared in terms of the noise gain behavior.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"332 - 336"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2022-0044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This manuscript presents a design of a differentiator in the digital domain with its low noise realization. It manifests the minimization of the L1 -error objective function by using a hybrid optimization technique consisting of the particle swarm and simulated annealing optimization algorithm. The obtained magnitude response provides a noteworthy approximation of the ideal differentiator with a minimal magnitude inaccuracy when compared with the existing designs. The realization structures are also investigated and compared in terms of the noise gain behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字微分器的优化设计与低噪声实现
摘要:本文介绍了一种数字域微分器的设计及其低噪声实现。利用粒子群算法和模拟退火算法的混合优化技术,实现了L1误差目标函数的最小化。与现有设计相比,获得的幅度响应提供了理想微分器的值得注意的近似,具有最小的幅度误差。本文还对各实现结构的噪声增益特性进行了研究和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical Engineering-elektrotechnicky Casopis
Journal of Electrical Engineering-elektrotechnicky Casopis 工程技术-工程:电子与电气
CiteScore
1.70
自引率
12.50%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising. -Automation and Control- Computer Engineering- Electronics and Microelectronics- Electro-physics and Electromagnetism- Material Science- Measurement and Metrology- Power Engineering and Energy Conversion- Signal Processing and Telecommunications
期刊最新文献
Elementary design and analysis of QCA-based T-flipflop for nanocomputing Model-free predictive current control of Syn-RM based on time delay estimation approach Design of a battery charging system fed by thermoelectric generator panels using MPPT techniques Methods of computer modeling of electromagnetic field propagation in urban scenarios for Internet of Things Precision of sinewave amplitude estimation in the presence of additive noise and quantization error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1