VARX and GSTARX Models for Forecasting Currency Inflow and Outflow with Multiple Calendar Variations Effect

IF 0.3 Q4 MATHEMATICS Matematika Pub Date : 2018-12-31 DOI:10.11113/MATEMATIKA.V34.N3.1139
S. Suhartono, M. Gazali, D. Prastyo
{"title":"VARX and GSTARX Models for Forecasting Currency Inflow and Outflow with Multiple Calendar Variations Effect","authors":"S. Suhartono, M. Gazali, D. Prastyo","doi":"10.11113/MATEMATIKA.V34.N3.1139","DOIUrl":null,"url":null,"abstract":"VARX and GSTARX models are an extension of Vector Autoregressive (VAR) and Generalized Space-Time Autoregressive (GSTAR) models. These models include exogenous variable to increase the forecast accuracy. The objective of this research is to develop and compare the forecast accuracy of VARX and GSTARX models in predicting currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara that contain multiple calendar variations effects. The exogenous variables that are used in this research are holidays in those three locations, i.e. EidFitr, Galungan, and Nyepi. The proposed VARX and GSTARX models are evaluated through simulation studies on the data that contain trend, seasonality, and multiple calendar variations representing the occurrence of EidFitr, Galungan, and Nyepi. The criteria for selecting the best forecasting model is Root Mean Square Error (RMSE). The results of a simulation study show that VARX and GSTARX models provide similar forecast accuracy. Furthermore, the results of currency inflow and outflow data in Bali,West Nusa Tenggara, and East Nusa Tenggara show that the best model for forecasting inflow and outflow in these three locations are VARX and GSTARX (with uniform weight) model, respectively. Both models show that currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara have a relationship in space and time, and contain trends, seasonality and multiple calendar variations.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N3.1139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

VARX and GSTARX models are an extension of Vector Autoregressive (VAR) and Generalized Space-Time Autoregressive (GSTAR) models. These models include exogenous variable to increase the forecast accuracy. The objective of this research is to develop and compare the forecast accuracy of VARX and GSTARX models in predicting currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara that contain multiple calendar variations effects. The exogenous variables that are used in this research are holidays in those three locations, i.e. EidFitr, Galungan, and Nyepi. The proposed VARX and GSTARX models are evaluated through simulation studies on the data that contain trend, seasonality, and multiple calendar variations representing the occurrence of EidFitr, Galungan, and Nyepi. The criteria for selecting the best forecasting model is Root Mean Square Error (RMSE). The results of a simulation study show that VARX and GSTARX models provide similar forecast accuracy. Furthermore, the results of currency inflow and outflow data in Bali,West Nusa Tenggara, and East Nusa Tenggara show that the best model for forecasting inflow and outflow in these three locations are VARX and GSTARX (with uniform weight) model, respectively. Both models show that currency inflow and outflow in Bali, West Nusa Tenggara, and East Nusa Tenggara have a relationship in space and time, and contain trends, seasonality and multiple calendar variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有多日历变化效应的货币流入和流出的VARX和GSTARX模型
VARX和GSTARX模型是向量自回归(VAR)和广义时空自回归(GSTAR)模型的扩展。这些模型包括外生变量以提高预测精度。本研究的目的是开发和比较VARX和GSTARX模型在预测巴厘岛、西努沙登加拉岛和东努沙登加拉岛的货币流入和流出时的预测准确性,这些地区包含多种日历变化效应。本研究中使用的外生变量是这三个地方的假期,即开斋节、加伦甘和奈皮。所提出的VARX和GSTARX模型是通过对数据的模拟研究进行评估的,这些数据包括趋势、季节性和代表开斋节、加伦甘节和尼埃皮节发生的多个日历变化。选择最佳预测模型的标准是均方根误差(RMSE)。模拟研究结果表明,VARX和GSTARX模型提供了相似的预测精度。此外,对巴厘岛、西努沙登加拉岛和东努沙登加拉岛的货币流入和流出数据的分析结果表明,预测这三个地区流入和流出的最佳模型分别是VARX和GSTARX(具有统一权重)模型。两个模型都表明,巴厘岛、西努沙登加拉岛和东努沙登加拉岛的货币流入和流出具有时空关系,并包含趋势、季节性和多种日历变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
An Almost Unbiased Regression Estimator: Theoretical Comparison and Numerical Comparison in Portland Cement Data Neutrosophic Bicubic Bezier Surface ApproximationModel for Uncertainty Data Using the ARIMA/SARIMA Model for Afghanistan's Drought Forecasting Based on Standardized Precipitation Index Heat Transfer Enhancement of Convective Casson Nanofluid Flow by CNTs over Exponentially Accelerated Plate Biclustering Models Under Collinearity in Simulated Biological Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1