Modeling Method for Static Large Deflection Problem of Curved Planar Beams in Compliant Mechanisms Based on a Novel Governing Equation

IF 2.2 4区 计算机科学 Q2 ENGINEERING, MECHANICAL Journal of Mechanisms and Robotics-Transactions of the Asme Pub Date : 2023-07-10 DOI:10.1115/1.4062916
Jingyu Jiang, Song Lin, Hanchao Wang, N. Modler
{"title":"Modeling Method for Static Large Deflection Problem of Curved Planar Beams in Compliant Mechanisms Based on a Novel Governing Equation","authors":"Jingyu Jiang, Song Lin, Hanchao Wang, N. Modler","doi":"10.1115/1.4062916","DOIUrl":null,"url":null,"abstract":"\n Slender beams serve as typical flexible components to transfer motion, force, and energy in compliant mechanisms (CMs). Therefore, the accurate and efficient kinetostatic modeling for the slender beams are highly needed in the synthesis and analysis of compliant mechanisms. Several impressive and great modeling methods have been completed by the pioneering researchers based on the governing equation of slender beams, which can solve the deflection of the beam while the beam-tip loads are known. However, parts of the beam-tip loads are unknown in some scenarios and the traditional governing equation becomes inefficient in these scenarios. The aim of this paper is to propose a novel modeling method for the compliant mechanism, which can solve the large deflection problem without iterative algorithm. In this research, a novel governing equation of slender beams has been established based on the Castigliano&s principle and simplified by the differential geometry. In the proposed governing equation, the statically force equilibrium equations and geometric constraint equations between different slender beams can be established in the boundary conditions, so the model of compliant mechanisms can be solved directly even if parts of the beam's tip loads and displacements are unknown. The proposed governing equation provides the deformed shapes and cross-sectional loads of the slender beams, which help the designer to check the mechanical interference and strength in the design process. The numerical examples are presented to demonstrate the feasibility of proposed method.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062916","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Slender beams serve as typical flexible components to transfer motion, force, and energy in compliant mechanisms (CMs). Therefore, the accurate and efficient kinetostatic modeling for the slender beams are highly needed in the synthesis and analysis of compliant mechanisms. Several impressive and great modeling methods have been completed by the pioneering researchers based on the governing equation of slender beams, which can solve the deflection of the beam while the beam-tip loads are known. However, parts of the beam-tip loads are unknown in some scenarios and the traditional governing equation becomes inefficient in these scenarios. The aim of this paper is to propose a novel modeling method for the compliant mechanism, which can solve the large deflection problem without iterative algorithm. In this research, a novel governing equation of slender beams has been established based on the Castigliano&s principle and simplified by the differential geometry. In the proposed governing equation, the statically force equilibrium equations and geometric constraint equations between different slender beams can be established in the boundary conditions, so the model of compliant mechanisms can be solved directly even if parts of the beam's tip loads and displacements are unknown. The proposed governing equation provides the deformed shapes and cross-sectional loads of the slender beams, which help the designer to check the mechanical interference and strength in the design process. The numerical examples are presented to demonstrate the feasibility of proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新控制方程的柔顺机构平面曲梁静态大挠度建模方法
细长梁作为典型的柔性构件,在柔性机构(CMs)中传递运动、力和能量。因此,在柔性机构的综合与分析中,对细长梁进行准确、高效的动静力建模是十分必要的。在已知梁端载荷的情况下,基于细长梁的控制方程,研究人员已经完成了一些令人印象深刻和伟大的建模方法。然而,在某些情况下,部分波束尖端载荷是未知的,传统的控制方程在这些情况下变得低效。本文的目的是提出一种新的柔顺机构建模方法,该方法可以解决大挠度问题,而无需迭代算法。本文基于卡斯蒂利亚诺原理建立了细长梁的控制方程,并用微分几何方法进行了简化。在所提出的控制方程中,可以在边界条件下建立不同细长梁之间的静力平衡方程和几何约束方程,从而在梁的部分端部载荷和位移未知的情况下直接求解柔性机构模型。所提出的控制方程提供了细长梁的变形形状和截面荷载,有助于设计者在设计过程中校核机械干涉和强度。数值算例验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
15.40%
发文量
131
审稿时长
4.5 months
期刊介绍: Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.
期刊最新文献
On the Construction of Confidence Regions for Uncertain Planar Displacements. Redundant Serial Manipulator Inverse Position Kinematics and Dynamics Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal Design and Analysis of a Novel Redundant Parallel Mechanism for Long Bone Fracture Reduction Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1