{"title":"Allocation of power in NOMA based 6G-enabled internet of things using multi-objective based genetic algorithm","authors":"S. K. Saraswat, V. Deolia, Aasheesh Shukla","doi":"10.2478/jee-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract Sixth generation (6G)-enabled internet of things (IoT) requires significant spectrum resources to deliver spectrum availability for massive IoT’s nodes. But the existing orthogonal multiple access limits the full utilization of limited spectrum resources. The non-orthogonal multiple access (NOMA) exploits the potential of power domain to improve the connectivity for 6G-enabled IoT. An efficient quality of service (QoS) aware power allocation approach is required to enhance the spectral efficiency and energy of NOMA based 6G-enabled IoT nodes. The multi-objective genetic algorithm (MOGA) is used to resolve the non-convex problem by considering the successive interference cancellation (SIC), QoS, and transmission power. Extensive experiments are drawn by using the Monte Carlo simulation to evaluate the significant improvement of the proposed model. Experimental results indicate that the proposed power allocation model provides good performance of the NOMA based IoT network.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"74 1","pages":"95 - 101"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering-elektrotechnicky Casopis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/jee-2023-0012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Sixth generation (6G)-enabled internet of things (IoT) requires significant spectrum resources to deliver spectrum availability for massive IoT’s nodes. But the existing orthogonal multiple access limits the full utilization of limited spectrum resources. The non-orthogonal multiple access (NOMA) exploits the potential of power domain to improve the connectivity for 6G-enabled IoT. An efficient quality of service (QoS) aware power allocation approach is required to enhance the spectral efficiency and energy of NOMA based 6G-enabled IoT nodes. The multi-objective genetic algorithm (MOGA) is used to resolve the non-convex problem by considering the successive interference cancellation (SIC), QoS, and transmission power. Extensive experiments are drawn by using the Monte Carlo simulation to evaluate the significant improvement of the proposed model. Experimental results indicate that the proposed power allocation model provides good performance of the NOMA based IoT network.
期刊介绍:
The joint publication of the Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, and of the Slovak Academy of Sciences, Institute of Electrical Engineering, is a wide-scope journal published bimonthly and comprising.
-Automation and Control-
Computer Engineering-
Electronics and Microelectronics-
Electro-physics and Electromagnetism-
Material Science-
Measurement and Metrology-
Power Engineering and Energy Conversion-
Signal Processing and Telecommunications