THE EFFECT OF ULTRA-FINE ALLOYING ELEMENTS ON THE PHASE COMPOSITION, MICROSTRUCTURE, HIGH-TEMPERATURE STRENGTH AND FRACTURE TOUGHNESS OF Ti–Si–X AND Ti–Cr–X COMPOSITES
V. Kulyk, B. Vasyliv, Z. Duriagina, P. Lyutyy, V. Vavrukh, T. Kovbasiuk, V. Vira, M. Holovchuk, T. Loskutova
{"title":"THE EFFECT OF ULTRA-FINE ALLOYING ELEMENTS ON THE PHASE COMPOSITION, MICROSTRUCTURE, HIGH-TEMPERATURE STRENGTH AND FRACTURE TOUGHNESS OF Ti–Si–X AND Ti–Cr–X COMPOSITES","authors":"V. Kulyk, B. Vasyliv, Z. Duriagina, P. Lyutyy, V. Vavrukh, T. Kovbasiuk, V. Vira, M. Holovchuk, T. Loskutova","doi":"10.36547/ams.28.1.1350","DOIUrl":null,"url":null,"abstract":"Advanced Ti-based composites are promising for applications in components of modern aircraft and rocket engines as well as other power equipment owing to their high strength-to-weight ratio and fracture toughness in a temperature range of 20 °C to 650 °C. However, there is a need to increase their operating temperature range up to 700−800 °C. In this work, mechanical behavior of Ti–Si–X composites (X=Al and/or Zr, Sn, C) has been studied. For comparison, mechanical behavior of Ti–Cr–X composite (X=Al and/or C) has been studied. As-cast and thermo-mechanically deformed series of beam specimens were examined. Strength tests of specimens were performed under three-point bending in a temperature range of 20 °C to 1000 °C. Single-edge notch beam (SENB) tests under three-point bending of specimen series were carried out in a temperature range of 20 °C to 900 °C for estimating fracture toughness of materials. Based on the constructed dependences of fracture toughness and strength on testing temperature for the specimen series as well as the microstructure and failure micromechanism analyses, the role of ultra-fine alloying elements in achieving good high-temperature strength and fracture toughness of the studied composites was substantiated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/ams.28.1.1350","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced Ti-based composites are promising for applications in components of modern aircraft and rocket engines as well as other power equipment owing to their high strength-to-weight ratio and fracture toughness in a temperature range of 20 °C to 650 °C. However, there is a need to increase their operating temperature range up to 700−800 °C. In this work, mechanical behavior of Ti–Si–X composites (X=Al and/or Zr, Sn, C) has been studied. For comparison, mechanical behavior of Ti–Cr–X composite (X=Al and/or C) has been studied. As-cast and thermo-mechanically deformed series of beam specimens were examined. Strength tests of specimens were performed under three-point bending in a temperature range of 20 °C to 1000 °C. Single-edge notch beam (SENB) tests under three-point bending of specimen series were carried out in a temperature range of 20 °C to 900 °C for estimating fracture toughness of materials. Based on the constructed dependences of fracture toughness and strength on testing temperature for the specimen series as well as the microstructure and failure micromechanism analyses, the role of ultra-fine alloying elements in achieving good high-temperature strength and fracture toughness of the studied composites was substantiated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.