The challenges of productive materials processing with ultrafast lasers

IF 2.3 Q2 OPTICS Advanced Optical Technologies Pub Date : 2021-10-14 DOI:10.1515/aot-2021-0038
R. Weber, T. Graf
{"title":"The challenges of productive materials processing with ultrafast lasers","authors":"R. Weber, T. Graf","doi":"10.1515/aot-2021-0038","DOIUrl":null,"url":null,"abstract":"Abstract Materials processing with ultrafast lasers with pulse durations in the range between about 100 fs and 10 ps enable very promising and emerging high-tech applications. Moreover, the average power of such lasers is steadily increasing; multi kilowatt systems have been demonstrated in laboratories and will be ready for the market in the next few years, allowing a significantly increase in productivity. However, the implementation of ultrafast laser processes in applications is very challenging due to fundamental physical limitations. In this paper, the main limitations will be discussed. These include limitations resulting from the physical material properties such as the ablation depth and the optimal fluence, from processing parameters such as air-breakdown and heat accumulation, from the processing system such as thermal focus shift, and from legal regulations due to the potential emission of soft X-rays.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"10 1","pages":"239 - 245"},"PeriodicalIF":2.3000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2021-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Materials processing with ultrafast lasers with pulse durations in the range between about 100 fs and 10 ps enable very promising and emerging high-tech applications. Moreover, the average power of such lasers is steadily increasing; multi kilowatt systems have been demonstrated in laboratories and will be ready for the market in the next few years, allowing a significantly increase in productivity. However, the implementation of ultrafast laser processes in applications is very challenging due to fundamental physical limitations. In this paper, the main limitations will be discussed. These include limitations resulting from the physical material properties such as the ablation depth and the optimal fluence, from processing parameters such as air-breakdown and heat accumulation, from the processing system such as thermal focus shift, and from legal regulations due to the potential emission of soft X-rays.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用超快激光加工生产材料的挑战
摘要利用脉冲持续时间在约100fs至10ps之间的超快激光器进行材料加工,能够实现非常有前景和新兴的高科技应用。此外,这种激光器的平均功率正在稳步增加;多千瓦系统已经在实验室中进行了演示,并将在未来几年内投入市场,从而显著提高生产力。然而,由于基本的物理限制,超快激光工艺在应用中的实施非常具有挑战性。本文将讨论其主要局限性。这些限制包括由物理材料特性(如消融深度和最佳注量)、处理参数(如空气击穿和热量积聚)、处理系统(如热焦点偏移)以及由于软X射线的潜在发射而产生的法律法规造成的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
23
期刊介绍: Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.
期刊最新文献
Erratum: Terahertz focusing blazed diffractive optical elements for frequency demultiplexing Investigation of laser-induced contamination on dielectric thin films in MHz sub-ps regime Terahertz focusing blazed diffractive optical elements for frequency demultiplexing Ultrafast laser processing of glass waveguide substrates for multi-fiber connectivity in co-packaged optics Light along curves: photonic shaping tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1