{"title":"Numerical Impact Analysis of Folding-Induced Tubular Thin-walled Energy-dissipating Elements","authors":"E. Ruocco, Antonia Giovenale, Danilo Di Giacinto","doi":"10.20898/j.iass.2021.013","DOIUrl":null,"url":null,"abstract":"This paper deals with the numerical impact analysis of tubular thin-walled steel-made elements with induced folding for energy dissipation application. The excellent deceleration of the impacting mass of axial collapsing structures favors their use in energy dissipation applications,\n such as impact resistance and rockfall protection. Dynamic Finite Element analyses have been carried out to evaluate the performance of vertical assemblies of cold-formed steel cell-shaped elements welded on each other to form collapsible tubular elements. In turn, these have been gathered\n in groups and restrained by galvanized steel wires to create modules. The axial collapse, which is the most effective energy absorption mechanism, has been triggered by shaping the elements' edge as serpentine. In the analysis, several assembly configurations have been subjected to a freefall\n rhombicuboctahedron-shaped rigid block impact; Falling height, impact angle, and block mass have been varied to investigate their effect on the performance. The numerical results show a good agreement when compared to those obtained through a real-scale experiment.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2021.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the numerical impact analysis of tubular thin-walled steel-made elements with induced folding for energy dissipation application. The excellent deceleration of the impacting mass of axial collapsing structures favors their use in energy dissipation applications,
such as impact resistance and rockfall protection. Dynamic Finite Element analyses have been carried out to evaluate the performance of vertical assemblies of cold-formed steel cell-shaped elements welded on each other to form collapsible tubular elements. In turn, these have been gathered
in groups and restrained by galvanized steel wires to create modules. The axial collapse, which is the most effective energy absorption mechanism, has been triggered by shaping the elements' edge as serpentine. In the analysis, several assembly configurations have been subjected to a freefall
rhombicuboctahedron-shaped rigid block impact; Falling height, impact angle, and block mass have been varied to investigate their effect on the performance. The numerical results show a good agreement when compared to those obtained through a real-scale experiment.
期刊介绍:
The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.