{"title":"Brain Outcomes in Runted Piglets: A Translational Model of Fetal Growth Restriction","authors":"Kirat K. Chand, K. Pannek, P. Colditz, J. Wixey","doi":"10.1159/000523995","DOIUrl":null,"url":null,"abstract":"Fetal growth restriction (FGR) is associated with long-term neurodevelopmental disabilities including learning and behavioral disorders, autism, and cerebral palsy. Persistent changes in brain structure and function that are associated with developmental disabilities are demonstrated in FGR neonates. However, the mechanisms underlying these changes remain to be determined. There are currently no therapeutic interventions available to protect the FGR newborn brain. With the wide range of long-term neurodevelopmental disorders associated with FGR, the use of an animal model appropriate to investigating mechanisms of injury in the FGR newborn is crucial for the development of effective and targeted therapies for babies. Piglets are ideal animals to explore how perinatal insults affect brain structure and function. FGR occurs spontaneously in the piglet, unlike other animal models that require surgical or chemical intervention, allowing brain outcomes to be studied without the confounding impacts of experimental interventions. The FGR piglet mimics many of the human pathophysiological outcomes associated with FGR including asymmetrical growth restriction with brain sparing. This review will discuss the similarities observed in brain outcomes between the FGR human and FGR piglet from a magnetic resonance imaging in the living and a histological perspective. FGR piglet studies provide the opportunity to determine and track mechanisms of brain injury in a clinically relevant animal model of FGR. Findings from these FGR piglet studies may provide critical information to rapidly translate neuroprotective interventions to clinic to improve outcomes for newborn babies.","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"44 1","pages":"194 - 204"},"PeriodicalIF":2.3000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000523995","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Fetal growth restriction (FGR) is associated with long-term neurodevelopmental disabilities including learning and behavioral disorders, autism, and cerebral palsy. Persistent changes in brain structure and function that are associated with developmental disabilities are demonstrated in FGR neonates. However, the mechanisms underlying these changes remain to be determined. There are currently no therapeutic interventions available to protect the FGR newborn brain. With the wide range of long-term neurodevelopmental disorders associated with FGR, the use of an animal model appropriate to investigating mechanisms of injury in the FGR newborn is crucial for the development of effective and targeted therapies for babies. Piglets are ideal animals to explore how perinatal insults affect brain structure and function. FGR occurs spontaneously in the piglet, unlike other animal models that require surgical or chemical intervention, allowing brain outcomes to be studied without the confounding impacts of experimental interventions. The FGR piglet mimics many of the human pathophysiological outcomes associated with FGR including asymmetrical growth restriction with brain sparing. This review will discuss the similarities observed in brain outcomes between the FGR human and FGR piglet from a magnetic resonance imaging in the living and a histological perspective. FGR piglet studies provide the opportunity to determine and track mechanisms of brain injury in a clinically relevant animal model of FGR. Findings from these FGR piglet studies may provide critical information to rapidly translate neuroprotective interventions to clinic to improve outcomes for newborn babies.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.