COPPER ADSORPTION ONTO POMEGRANATE PEEL ACTIVATED CARBON AS A NEW ADSORBENT

IF 1.3 4区 农林科学 Q2 MATERIALS SCIENCE, PAPER & WOOD Cellulose Chemistry and Technology Pub Date : 2023-07-20 DOI:10.35812/cellulosechemtechnol.2023.57.60
W. Saadi, S. Souissi-Najar, Mariem Othman, A. Ouederni
{"title":"COPPER ADSORPTION ONTO POMEGRANATE PEEL ACTIVATED CARBON AS A NEW ADSORBENT","authors":"W. Saadi, S. Souissi-Najar, Mariem Othman, A. Ouederni","doi":"10.35812/cellulosechemtechnol.2023.57.60","DOIUrl":null,"url":null,"abstract":"Pomegranate peel-based activated carbon was prepared using phosphoric acid impregnation for removing copper ions from aqueous solutions. The activated carbon sample was characterized using N2 adsorption–desorption isotherms, SEM, FTIR, and Boehm titration. Batch adsorption experiments were performed as a function of initial pH, contact time, initial ion concentration and temperature. The metal adsorption was found pH dependent, with maximum adsorption occurring at an initial pH of 5.4. Langmuir, Freundlich and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich isotherm was considered to be the best model for representing Cu(II) adsorption data. The kinetic studies were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion models, with good fitting to the pseudo-second-order model. The adsorption behavior of the binary solution system Cu(II)-Cd(II) showed that the adsorbent has higher selectivity towards copper ions than cadmium ions.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2023.57.60","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Pomegranate peel-based activated carbon was prepared using phosphoric acid impregnation for removing copper ions from aqueous solutions. The activated carbon sample was characterized using N2 adsorption–desorption isotherms, SEM, FTIR, and Boehm titration. Batch adsorption experiments were performed as a function of initial pH, contact time, initial ion concentration and temperature. The metal adsorption was found pH dependent, with maximum adsorption occurring at an initial pH of 5.4. Langmuir, Freundlich and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich isotherm was considered to be the best model for representing Cu(II) adsorption data. The kinetic studies were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion models, with good fitting to the pseudo-second-order model. The adsorption behavior of the binary solution system Cu(II)-Cd(II) showed that the adsorbent has higher selectivity towards copper ions than cadmium ions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石榴皮活性炭对铜的吸附性能
采用磷酸浸渍法制备了石榴皮活性炭,用于去除水溶液中的铜离子。使用N2吸附-解吸等温线、SEM、FTIR和Boehm滴定对活性炭样品进行了表征。分批吸附实验是作为初始pH、接触时间、初始离子浓度和温度的函数进行的。发现金属吸附依赖于pH,最大吸附发生在5.4的初始pH。用Langmuir、Freundlich和Temkin等温线分析了不同温度下的平衡数据。Freundlich等温线被认为是表示Cu(II)吸附数据的最佳模型。使用伪一阶、伪二阶和颗粒内扩散模型对动力学研究进行了分析,与伪二阶模型拟合良好。Cu(II)-Cd(II)二元溶液体系的吸附行为表明,该吸附剂对铜离子的选择性高于对镉离子的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellulose Chemistry and Technology
Cellulose Chemistry and Technology 工程技术-材料科学:纸与木材
CiteScore
2.30
自引率
23.10%
发文量
81
审稿时长
7.3 months
期刊介绍: Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry. Topics include: • studies of structure and properties • biological and industrial development • analytical methods • chemical and microbiological modifications • interactions with other materials
期刊最新文献
WHITE-ROT FUNGAL PRETREATMENT OF WHEAT STRAW: EFFECT ON ENZYMATIC HYDROLYSIS OF CARBOHYDRATE POLYMERS EXTRACTION, CHARACTERIZATION AND KINETICS OF THERMAL DECOMPOSITION OF LIGNIN FROM DATE SEEDS USING MODEL-FREE AND FITTING APPROACHES EFFECT OF NATURAL DYES AND DIFFERENT MORDANT TREATMENTS ON ULTRA-VIOLET PROTECTION PROPERTY OF COTTON FABRIC A STUDY OF CELLULOSE AND LIGNIN EXTRACTED FROM SĀNCI BARK AND THEIR MODIFICATION EFFECT OF CELLULOSE NANOFIBERS FROM RED COCONUT PEDUNCLE WASTE AS REINFORCEMENT IN EPOXY COMPOSITE SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1