Symbolic knowledge extraction from opaque ML predictors in PSyKE: Platform design & experiments

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Intelligenza Artificiale Pub Date : 2022-07-08 DOI:10.3233/ia-210120
Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, Andrea Omicini
{"title":"Symbolic knowledge extraction from opaque ML predictors in PSyKE: Platform design & experiments","authors":"Federico Sabbatini, Giovanni Ciatto, Roberta Calegari, Andrea Omicini","doi":"10.3233/ia-210120","DOIUrl":null,"url":null,"abstract":"A common practice in modern explainable AI is to post-hoc explain black-box machine learning (ML) predictors – such as neural networks – by extracting symbolic knowledge out of them, in the form of either rule lists or decision trees. By acting as a surrogate model, the extracted knowledge aims at revealing the inner working of the black box, thus enabling its inspection, representation, and explanation. Various knowledge-extraction algorithms have been presented in the literature so far. Unfortunately, running implementations of most of them are currently either proofs of concept or unavailable. In any case, a unified, coherent software framework supporting them all – as well as their interchange, comparison, and exploitation in arbitrary ML workflows – is currently missing. Accordingly, in this paper we discuss the design of PSyKE, a platform providing general-purpose support to symbolic knowledge extraction from different sorts of black-box predictors via many extraction algorithms. Notably, PSyKE targets symbolic knowledge in logic form, allowing the extraction of first-order logic clauses. The extracted knowledge is thus both machine- and human-interpretable, and can be used as a starting point for further symbolic processing—e.g. automated reasoning.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"16 1","pages":"27-48"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ia-210120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7

Abstract

A common practice in modern explainable AI is to post-hoc explain black-box machine learning (ML) predictors – such as neural networks – by extracting symbolic knowledge out of them, in the form of either rule lists or decision trees. By acting as a surrogate model, the extracted knowledge aims at revealing the inner working of the black box, thus enabling its inspection, representation, and explanation. Various knowledge-extraction algorithms have been presented in the literature so far. Unfortunately, running implementations of most of them are currently either proofs of concept or unavailable. In any case, a unified, coherent software framework supporting them all – as well as their interchange, comparison, and exploitation in arbitrary ML workflows – is currently missing. Accordingly, in this paper we discuss the design of PSyKE, a platform providing general-purpose support to symbolic knowledge extraction from different sorts of black-box predictors via many extraction algorithms. Notably, PSyKE targets symbolic knowledge in logic form, allowing the extraction of first-order logic clauses. The extracted knowledge is thus both machine- and human-interpretable, and can be used as a starting point for further symbolic processing—e.g. automated reasoning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSyKE中不透明ML预测器的符号知识提取:平台设计与实验
现代可解释人工智能中的一种常见做法是通过以规则列表或决策树的形式从黑盒机器学习(ML)预测因子(如神经网络)中提取符号知识,对其进行事后解释。通过充当代理模型,提取的知识旨在揭示黑匣子的内部工作,从而实现对黑匣子的检查、表示和解释。到目前为止,文献中已经提出了各种知识提取算法。不幸的是,大多数正在运行的实现目前要么是概念证明,要么不可用。无论如何,目前缺少一个统一、连贯的软件框架来支持它们,以及它们在任意ML工作流中的交换、比较和利用。因此,在本文中,我们讨论了PSyKE的设计,这是一个通过多种提取算法从不同类型的黑盒预测器中提取符号知识的通用支持平台。值得注意的是,PSyKE以逻辑形式的符号知识为目标,允许提取一阶逻辑子句。因此,提取的知识既可由机器解释,也可由人类解释,并可作为进一步符号处理的起点,例如自动推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
期刊最新文献
Special Issue NL4AI 2022: Workshop on natural language for artificial intelligence User-centric item characteristics for personalized multimedia systems: A systematic review Combining human intelligence and machine learning for fact-checking: Towards a hybrid human-in-the-loop framework A framework for safe decision making: A convex duality approach Grounding End-to-End Pre-trained architectures for Semantic Role Labeling in multiple languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1