{"title":"Image feature learning combined with attention-based spectral representation for spatio-temporal photovoltaic power prediction","authors":"Xingchen Guo, Jing Lai, Zhou Zheng, Chenxiang Lin, Yuxing Dai, Xuexin Xu, Haisheng San, Rong Jia, Zhihong Zhang","doi":"10.1049/cvi2.12199","DOIUrl":null,"url":null,"abstract":"<p>Clean energy is a major trend. The importance of photovoltaic power generation is also growing. Photovoltaic power generation is mainly affected by the weather. It is full of uncertainties. Previous work has relied chiefly on historical photovoltaics data for time series forecasts. However, unforeseen weather conditions can sometimes skew. Consequently, a spatial-temporal-meteorological-long short-term memory prediction model (STM-LSTM) is proposed to compensate for the shortage of photovoltaic prediction models for uncertainties. This model can simultaneously process satellite image data, historical meteorological data, and historical power generation data. In this way, historical patterns and meteorological change information are extracted to improve the accuracy of photovoltaic prediction. STM-LSTM processes raw satellite data to obtain cloud image data. It can extract cloud motion information using the dense optical flow method. First, the cloud images are processed to extract cloud position information. By adaptive attentive learning of images in different bands, a better representation for subsequent tasks can be obtained. Second, it is important to process historical meteorological data to learn meteorological change patterns. Last but not least, the historical photovoltaic power generation sequences are combined to obtain the final photovoltaic prediction results. After a series of experimental validation, the performance of the proposed STM-LSTM model has a good improvement compared with the baseline model.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"17 7","pages":"777-794"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12199","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12199","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Clean energy is a major trend. The importance of photovoltaic power generation is also growing. Photovoltaic power generation is mainly affected by the weather. It is full of uncertainties. Previous work has relied chiefly on historical photovoltaics data for time series forecasts. However, unforeseen weather conditions can sometimes skew. Consequently, a spatial-temporal-meteorological-long short-term memory prediction model (STM-LSTM) is proposed to compensate for the shortage of photovoltaic prediction models for uncertainties. This model can simultaneously process satellite image data, historical meteorological data, and historical power generation data. In this way, historical patterns and meteorological change information are extracted to improve the accuracy of photovoltaic prediction. STM-LSTM processes raw satellite data to obtain cloud image data. It can extract cloud motion information using the dense optical flow method. First, the cloud images are processed to extract cloud position information. By adaptive attentive learning of images in different bands, a better representation for subsequent tasks can be obtained. Second, it is important to process historical meteorological data to learn meteorological change patterns. Last but not least, the historical photovoltaic power generation sequences are combined to obtain the final photovoltaic prediction results. After a series of experimental validation, the performance of the proposed STM-LSTM model has a good improvement compared with the baseline model.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf