François Rivière, T. de Guillebon, L'eo Maumet, G. H'etet, Martin Schmidt, J. Lauret, L. Rondin
{"title":"Thermometry of an optically levitated nanodiamond","authors":"François Rivière, T. de Guillebon, L'eo Maumet, G. H'etet, Martin Schmidt, J. Lauret, L. Rondin","doi":"10.1116/5.0093600","DOIUrl":null,"url":null,"abstract":"Using the spin properties of nitrogen-vacancy (NV) centers in levitated diamonds, we characterize the absorption of single nanodiamonds. We first calibrate the thermometry response of the NV centers embedded in our nanodiamonds. Then, using this calibration, we estimate the absorption cross-section of single levitated nanodiamonds. We show that this absorption is extrinsic and dominated by volumic effects. Our work opens the way to diamond material optimization for levitation quantum experiments. It also demonstrates optical levitation as a unique platform to characterize material thermal properties at the nanoparticle level.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0093600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Using the spin properties of nitrogen-vacancy (NV) centers in levitated diamonds, we characterize the absorption of single nanodiamonds. We first calibrate the thermometry response of the NV centers embedded in our nanodiamonds. Then, using this calibration, we estimate the absorption cross-section of single levitated nanodiamonds. We show that this absorption is extrinsic and dominated by volumic effects. Our work opens the way to diamond material optimization for levitation quantum experiments. It also demonstrates optical levitation as a unique platform to characterize material thermal properties at the nanoparticle level.