K. Siakavara, S. Goudos, A. Theopoulos, J. Sahalos
{"title":"Passive UHF RFID Tags with Specific Printed Antennas for Dielectric and Metallic Objects Applications","authors":"K. Siakavara, S. Goudos, A. Theopoulos, J. Sahalos","doi":"10.13164/RE.2017.0735","DOIUrl":null,"url":null,"abstract":"Design process and respective results for the synthesis of specific Radiofrequency Identification (RFID) tag antennas, suitable for dielectric and metallic objects, are presented. The antennas were designed for the UHF (865 MHz-869 MHz) band and their basic configuration is that of the printed spiral type. Six modification steps to the classical spiral layout are proposed and it was proved that they can lead to tags with high readability and reading distances up to 10 m when designed for dielectric object and up to 7 m in the case of metallic objects. The results of the measurements of the fabricated tags are explained via theoretical evaluations which take into account reflection phenomena, which are present in a real environment at which the tags are used.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":"26 1","pages":"735-745"},"PeriodicalIF":0.5000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.13164/RE.2017.0735","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/RE.2017.0735","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7
Abstract
Design process and respective results for the synthesis of specific Radiofrequency Identification (RFID) tag antennas, suitable for dielectric and metallic objects, are presented. The antennas were designed for the UHF (865 MHz-869 MHz) band and their basic configuration is that of the printed spiral type. Six modification steps to the classical spiral layout are proposed and it was proved that they can lead to tags with high readability and reading distances up to 10 m when designed for dielectric object and up to 7 m in the case of metallic objects. The results of the measurements of the fabricated tags are explained via theoretical evaluations which take into account reflection phenomena, which are present in a real environment at which the tags are used.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.