{"title":"Portable device for on-site detection of ammonia nitrogen","authors":"Xianbao Xu , Zhuangzhuang Bai , Tan Wang","doi":"10.1016/j.inpa.2022.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Portable measurement of ammonia nitrogen in water is of great significance for water quality monitoring. It’s beneficial to reduce biological diseases and promote aquatic product safety. Traditional methods such as Nessler’s reagent method suffer from complex operation, time delays and toxic residues. To realize simple and pollution-free detection, this paper develops a low-cost portable device for ammonia nitrogen detection. A test paper was proposed to cooperate the device and offer a chromogenic reaction. The portable device reduces the impact of any ambient light, simplifies the operation, and provides human–computer interaction. The result obtained for the detection range of 0.4–10 mg/L (R<sup>2</sup> are 0.990 2 and 0.989 3 for the rang of 0.4–4.5 and 4.5–10 mg/L, respectively) with the detection limit of 0.36 mg/L, and the average recovery of aquaculture water is 100.98–137.75%. The results show that the portable device can provide a great potential for on-site detection ammonia nitrogen concentration.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"9 4","pages":"Pages 475-484"},"PeriodicalIF":7.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317322000683/pdfft?md5=797d1c6a670df027916897925e71bf3a&pid=1-s2.0-S2214317322000683-main.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Portable measurement of ammonia nitrogen in water is of great significance for water quality monitoring. It’s beneficial to reduce biological diseases and promote aquatic product safety. Traditional methods such as Nessler’s reagent method suffer from complex operation, time delays and toxic residues. To realize simple and pollution-free detection, this paper develops a low-cost portable device for ammonia nitrogen detection. A test paper was proposed to cooperate the device and offer a chromogenic reaction. The portable device reduces the impact of any ambient light, simplifies the operation, and provides human–computer interaction. The result obtained for the detection range of 0.4–10 mg/L (R2 are 0.990 2 and 0.989 3 for the rang of 0.4–4.5 and 4.5–10 mg/L, respectively) with the detection limit of 0.36 mg/L, and the average recovery of aquaculture water is 100.98–137.75%. The results show that the portable device can provide a great potential for on-site detection ammonia nitrogen concentration.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining