{"title":"Augmented robust T-S fuzzy control based PMSG wind turbine improved with H∞ performance","authors":"Naoual Tidjani, A. Guessoum","doi":"10.11591/IJPEDS.V12.I1.PP585-596","DOIUrl":null,"url":null,"abstract":"In this paper, an improved augmented Takagi-Sugeno fuzzy control design applied to the system of converting wind turbine energy was proposed. The wind generator used is based on a permanent magnet synchronous wind power generator (PMSG) under varying operation of the wind speed. The proposed T-S fuzzy control strategy aims to maximize wind energy in low wind speed. A part of our contribution lies in the limitation of the power output of the wind generator in high wind speed. Through the concept of the virtual desired variables, the design of the output tracking controller is achieved. In light of this concept, the developed T-S fuzzy control was designed via parallel-distributed compensation (PDC) approach with H ∞ performance. Sufficient conditions for the stability of the closed-loop system affected by external disturbances are proved from Lyapunov’s direct method and the feedback gains of the controller strategy are determined by linear matrix inequalities (LMIs) tools. Another contribution is in showing the robustness of the Takagi-Sugeno based control strategy, with a focus on a set of system parameters with model uncertainties. The simulation results show the high performance of the proposed controller strategy for a 5MW (PMSG) obtained through simulation.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"585-596"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP585-596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, an improved augmented Takagi-Sugeno fuzzy control design applied to the system of converting wind turbine energy was proposed. The wind generator used is based on a permanent magnet synchronous wind power generator (PMSG) under varying operation of the wind speed. The proposed T-S fuzzy control strategy aims to maximize wind energy in low wind speed. A part of our contribution lies in the limitation of the power output of the wind generator in high wind speed. Through the concept of the virtual desired variables, the design of the output tracking controller is achieved. In light of this concept, the developed T-S fuzzy control was designed via parallel-distributed compensation (PDC) approach with H ∞ performance. Sufficient conditions for the stability of the closed-loop system affected by external disturbances are proved from Lyapunov’s direct method and the feedback gains of the controller strategy are determined by linear matrix inequalities (LMIs) tools. Another contribution is in showing the robustness of the Takagi-Sugeno based control strategy, with a focus on a set of system parameters with model uncertainties. The simulation results show the high performance of the proposed controller strategy for a 5MW (PMSG) obtained through simulation.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.