{"title":"Low-Power Highly Reliable SET-Induced Dual-Node Upset-Hardened Latch and Flip-Flop","authors":"Riadul Islam","doi":"10.1109/CJECE.2019.2895047","DOIUrl":null,"url":null,"abstract":"It appears that the relentless pursuit of Moore’s law scaling from one generation of process technology to the next increases circuit vulnerability to single-event transient (SET)-induced double-node upset (SEDU). In this paper, we present a novel SEDU-hardened latch. The latch consists of a new 16-transistor (16T) SEDU-hardened storage cell and a C-type output buffer. The latch exhibits 25% lower power consumption, is 81% faster, and also shows 86% lower power-delay product than the existing SEDU-hardened latches. In addition, we present the first SEDU-hardened flip-flop that exhibits negative hold time. The proposed SEDU-hardened flip-flop is 29% faster, consumes 50% lower dynamic power and 25% lower static power, has 45% lower setup time, and uses 27% lower area than the existing partial SEDU-hardened flip-flop.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2019.2895047","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2019.2895047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
It appears that the relentless pursuit of Moore’s law scaling from one generation of process technology to the next increases circuit vulnerability to single-event transient (SET)-induced double-node upset (SEDU). In this paper, we present a novel SEDU-hardened latch. The latch consists of a new 16-transistor (16T) SEDU-hardened storage cell and a C-type output buffer. The latch exhibits 25% lower power consumption, is 81% faster, and also shows 86% lower power-delay product than the existing SEDU-hardened latches. In addition, we present the first SEDU-hardened flip-flop that exhibits negative hold time. The proposed SEDU-hardened flip-flop is 29% faster, consumes 50% lower dynamic power and 25% lower static power, has 45% lower setup time, and uses 27% lower area than the existing partial SEDU-hardened flip-flop.
期刊介绍:
The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976