Chen Peng, Andrew T. Namanja, Eva Munoz, Haihong Wu, Thomas E. Frederick, Mitcheell Maestre-Martinez, Isaac Iglesias Fernandez, Qi Sun, Carlos Cobas, Chaohong Sun, Andrew M. Petros
{"title":"Efficiently driving protein-based fragment screening and lead discovery using two-dimensional NMR","authors":"Chen Peng, Andrew T. Namanja, Eva Munoz, Haihong Wu, Thomas E. Frederick, Mitcheell Maestre-Martinez, Isaac Iglesias Fernandez, Qi Sun, Carlos Cobas, Chaohong Sun, Andrew M. Petros","doi":"10.1007/s10858-022-00410-3","DOIUrl":null,"url":null,"abstract":"<div><p>Fragment-based drug discovery (FBDD) and validation of small molecule binders using NMR spectroscopy is an established and widely used method in the early stages of drug discovery. Starting from a library of small compounds, ligand- or protein-observed NMR methods are employed to detect binders, typically weak, that become the starting points for structure–activity relationships (SAR) by NMR. Unlike the more frequently used ligand-observed 1D NMR techniques, protein-observed 2D <sup>1</sup>H-<sup>15</sup>N or <sup>1</sup>H-<sup>13</sup>C heteronuclear correlation (HSQC or HMQC) methods offer insights that include the mechanism of ligand engagement on the target and direct binding affinity measurements in addition to routine screening. We hereby present the development of a set of software tools within the MestReNova (Mnova) package for analyzing 2D NMR for FBDD and hit validation purposes. The package covers three main tasks: (1) unsupervised profiling of raw data to identify outlier data points to exclude in subsequent analyses; (2) batch processing of single-point spectra to identify and rank binders based on chemical shift perturbations or spectral peak intensity changes; and (3) batch processing of multiple titration series to derive binding affinities (<i>K</i><sub>D</sub>) by tracing the changes in peak locations or measuring global spectral changes. Toward this end, we implemented and evaluated a set of algorithms for automated peak tracing, spectral binning, and variance analysis by PCA, and a new tool for spectral data intensity comparison using ECHOS. The accuracy and speed of the tools are demonstrated on 2D NMR binding data collected on ligands used in the development of potential inhibitors of the anti-apoptotic MCL-1 protein.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 1-2","pages":"39 - 53"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10858-022-00410-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-022-00410-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Fragment-based drug discovery (FBDD) and validation of small molecule binders using NMR spectroscopy is an established and widely used method in the early stages of drug discovery. Starting from a library of small compounds, ligand- or protein-observed NMR methods are employed to detect binders, typically weak, that become the starting points for structure–activity relationships (SAR) by NMR. Unlike the more frequently used ligand-observed 1D NMR techniques, protein-observed 2D 1H-15N or 1H-13C heteronuclear correlation (HSQC or HMQC) methods offer insights that include the mechanism of ligand engagement on the target and direct binding affinity measurements in addition to routine screening. We hereby present the development of a set of software tools within the MestReNova (Mnova) package for analyzing 2D NMR for FBDD and hit validation purposes. The package covers three main tasks: (1) unsupervised profiling of raw data to identify outlier data points to exclude in subsequent analyses; (2) batch processing of single-point spectra to identify and rank binders based on chemical shift perturbations or spectral peak intensity changes; and (3) batch processing of multiple titration series to derive binding affinities (KD) by tracing the changes in peak locations or measuring global spectral changes. Toward this end, we implemented and evaluated a set of algorithms for automated peak tracing, spectral binning, and variance analysis by PCA, and a new tool for spectral data intensity comparison using ECHOS. The accuracy and speed of the tools are demonstrated on 2D NMR binding data collected on ligands used in the development of potential inhibitors of the anti-apoptotic MCL-1 protein.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.