Crystallization of RE2(OH)2CO3SO4·nH2O as a new family of layered hydroxides (RE = Gd−Lu lanthanides and Y), derivation of RE2O2SO4, photoluminescence and optical thermometry
{"title":"Crystallization of RE2(OH)2CO3SO4·nH2O as a new family of layered hydroxides (RE = Gd−Lu lanthanides and Y), derivation of RE2O2SO4, photoluminescence and optical thermometry","authors":"","doi":"10.1016/j.jre.2023.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Layered rare-earth hydroxides (LREHs) draw wide research interest because of their peculiar crystal structure, rich interlayer chemistry and abundant functionality of the RE element, but are limited to the two categories of RE<sub>2</sub>(OH)<sub>5</sub>A·<em>n</em>H<sub>2</sub>O (A: typical of Cl<sup>−</sup> or NO<sub>3</sub><sup>−</sup>) and RE<sub>2</sub>(OH)<sub>4</sub>SO<sub>4</sub>·<em>n</em>H<sub>2</sub>O. On the other hand, rare-earth oxysulfates (RE<sub>2</sub>O<sub>2</sub>SO<sub>4</sub>) have attracted attention due to their properties of large-capacity oxygen storage, low-temperature magnetism and luminescence, but their preparation procedure mostly involves toxic SO<sub><em>x</em></sub> gases and/or complicated procedures. In this work, RE<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>SO<sub>4</sub>·<em>n</em>H<sub>2</sub>O as a new family of LREHs (RE = Gd‒Lu lanthanides and Y) were produced via hydrothermal reaction, from which phase-pure RE<sub>2</sub>O<sub>2</sub>SO<sub>4</sub> was derived via subsequent annealing at 800 °C in air without the involvement of SO<sub><em>x</em></sub>. The compounds were thoroughly characterized to reveal the intrinsic influence of lanthanide contraction (RE<sup>3+</sup> radius) on crystal structure, thermal behavior (dehydroxylation/decarbonation/desulfurization), vibrational property and crystallite morphology. Through analyzing the photoluminescence of Eu<sup>3+</sup> and Sm<sup>3+</sup> in the Gd<sub>2</sub>O<sub>2</sub>SO<sub>4</sub> typical host it is found that the 617 nm (Eu<sup>3+</sup>, <em>λ</em><sub>ex</sub> = 275 nm) and 608 nm (Sm<sup>3+</sup>, <em>λ</em><sub>ex</sub> = 407 nm) main emissions can retain as high as ∼79.6% and 85.5% of their room-temperature intensities at 423 K, with activation energies of ∼0.19 and 0.21 eV for thermal quenching, respectively. Application also indicates that both the phosphors have the potential for optical temperature sensing via the fluorescence intensity ratio (FIR) technology, whose maximum relative sensitivity reaches ∼2.70%/K for Eu<sup>3+</sup> and 1.73%/K for Sm<sup>3+</sup> at 298 K.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1496-1506"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123001898","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Layered rare-earth hydroxides (LREHs) draw wide research interest because of their peculiar crystal structure, rich interlayer chemistry and abundant functionality of the RE element, but are limited to the two categories of RE2(OH)5A·nH2O (A: typical of Cl− or NO3−) and RE2(OH)4SO4·nH2O. On the other hand, rare-earth oxysulfates (RE2O2SO4) have attracted attention due to their properties of large-capacity oxygen storage, low-temperature magnetism and luminescence, but their preparation procedure mostly involves toxic SOx gases and/or complicated procedures. In this work, RE2(OH)2CO3SO4·nH2O as a new family of LREHs (RE = Gd‒Lu lanthanides and Y) were produced via hydrothermal reaction, from which phase-pure RE2O2SO4 was derived via subsequent annealing at 800 °C in air without the involvement of SOx. The compounds were thoroughly characterized to reveal the intrinsic influence of lanthanide contraction (RE3+ radius) on crystal structure, thermal behavior (dehydroxylation/decarbonation/desulfurization), vibrational property and crystallite morphology. Through analyzing the photoluminescence of Eu3+ and Sm3+ in the Gd2O2SO4 typical host it is found that the 617 nm (Eu3+, λex = 275 nm) and 608 nm (Sm3+, λex = 407 nm) main emissions can retain as high as ∼79.6% and 85.5% of their room-temperature intensities at 423 K, with activation energies of ∼0.19 and 0.21 eV for thermal quenching, respectively. Application also indicates that both the phosphors have the potential for optical temperature sensing via the fluorescence intensity ratio (FIR) technology, whose maximum relative sensitivity reaches ∼2.70%/K for Eu3+ and 1.73%/K for Sm3+ at 298 K.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.